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a b s t r a c t

It is well understood that the two most popular empirical models of location choice – conditional logit

and Poisson – return identical coefficient estimates when the regressors are not individual specific. We

show that these two models differ starkly in terms of their implied predictions. The conditional logit

model represents a zero-sum world, in which one region’s gain is the other regions’ loss. In contrast,

the Poisson model implies a positive-sum economy, in which one region’s gain is no other region’s loss.

We also show that all intermediate cases can be represented as a nested logit model with a single outside

option. The nested logit turns out to be a linear combination of the conditional logit and Poisson models.

Conditional logit and Poisson elasticities mark the polar cases and can therefore serve as boundary values

in applied research.

Ó 2010 Published by Elsevier Inc.

1. Introduction

Location choices by households and firms are of interest to

economists for numerous reasons, ranging from the determinants

of residential segregation patterns in cities to the design of national

tax policy. Given the discrete nature of such choices, they are typ-

ically modelled by empirical researchers through McFadden’s

(1974) conditional logit framework.3 The appeal of this approach

lies in its formal link between the theoretical objective function of

a representative location-seeking agent and the likelihood function

of the empirical model.

Mostly out of a perception of greater computational ease,

researchers have resorted to Poisson count estimation as an alter-

native approach to the conditional logit.4 Guimaraes et al. (2003),

henceforth GFW, have shown that, with purely location-specific

locational determinants or with determinants that are specific to

locations and to groups of agents, the conditional logit and Poisson

estimators return identical parameter estimates. In this sense, the

two estimators are equivalent, and the rigorous link to the theory of-

fered by the conditional logit model therefore applies identically to

the Poisson. This useful result has already been applied widely in

the location choice literature.5

We show that the identical coefficient estimates resulting from

the two estimation strategies in fact have fundamentally different

economic implications. The conditional logit model implies that

the aggregate number of agents is fixed and that differences across

locations affect only the distribution of those agents across those

locations. Hence, an additional agent attracted to location j means
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one less agent among the other locations in the relevant set, i– j.

In the Poisson model, however, an additional agent attracted to

location j has no impact on the number of agents in the remaining

locations and thus raises the aggregate number of agents, summed

across i and j, by one. Thus, the conditional logit model and the

Poisson model can be viewed as polar cases, with the former rep-

resenting zero-sum reallocations of firms or households across

locations and the latter implying a positive-sum world.6

We also show that intermediate cases between these two ex-

tremes can be represented by a nested logit model featuring a gen-

eric outside option. This approach returns the same parameter

estimates as the two other estimators. The nested logit in fact

can be written as a linear combination of the conditional logit

and Poisson models, with a single ‘‘rivalness parameter’’ represent-

ing the closeness of the nested logit to the conditional logit (and

thus the distance from the Poisson). Conditional logit and Poisson

elasticities mark the polar cases and can therefore serve as bound-

ary values in applied research.

The paper is structured as follows. In Section 2, we formally de-

rive the commonalities and differences among the conditional lo-

git, Poisson and nested logit models. Empirical implications and

an illustration are presented in Section 3. Section 4 concludes.

2. The models

We denote agents with f = 1, . . ., N and regions with j = 1, . . ., J.

For simplicity, we shall frame our discussion in terms of corporate

location decisions, and therefore relate to f as ‘‘firms’’.

Following GFW, we first assume the determinants of locational

attractiveness to be purely region specific, such that they affect all

firms symmetrically (case A). The K observable characteristics of

each region are given by the (K � 1) vector xj. We shall later relax

this assumption, and allow locational attractiveness to be region-

industry specific (case B).

The random variable nj represents the count of firms in region j,

whereas Nj denotes the number of firms actually observed in re-

gion j. Analogously, the random variable n represents the total

number of firms, whereas N denotes the observed total number

of firms.

2.1. Case A: industry-invariant locational determinants

2.1.1. Conditional logit

Suppose that firm f’s profit in region j is determined by the lin-

ear model pfj ¼ x0jbþ ufj, where b is a (K � 1) vector of coefficients.

Then, the conditional logit model is defined by the assumption that

the random term ufj is independent across f and j and follows an

extreme-value type 1 distribution. With this assumption, the prob-

ability that a given firm f chooses region j rather than another re-

gion is given by

Pjjf ¼ Pj ¼
e
x0
j
b

PJ
i¼1e

x0
i
b
; ð1Þ

where
P

jPjjf ¼ 1 for all f. Since locational characteristics xj are as-

sumed here to affect all firms symmetrically, this probability also

represents the share of firms that will choose region j.

The parameter b can be estimated by maximum likelihood. We

can write the log likelihood as

log LðbÞ ¼
XJ

j¼1

Nj log Pj ¼
XJ

j¼1

Njx
0
jbÿ

XJ

j¼1

Nj log
XJ

i¼1

ex
0
i
b

 !" #

: ð2Þ

The conditional logit model implicitly assumes that the total

number of firms n is given and does not depend on the locational

characteristics x. The expected number of firms in region j, E(nj)

is therefore simply

EðnjÞ ¼ nPj ¼ n
e
x0
j
b

PJ
i¼1e

x0
i
b
: ð3Þ

The percentage change in the expected number of firms in re-

gion j, E(nj), with respect to a unit change in the kth locational char-

acteristic of region j itself is given respectively by the own-region

semi-elasticity:

�jj ¼
@ log EðnjÞ

@xjk
¼ ð1ÿ PjÞbk: ð4Þ

Similarly, the percentage change in the expected number of

firms in another region, E(ni–j), with respect to a unit change in

j’s kth locational characteristic is given by the cross-region semi-

elasticity:

�ij ¼
@ log EðniÞ

@xjk
¼ ÿPjbk: ð5Þ

For simplicity, we shall henceforth refer to these and all subse-

quently presented semi-elasticities as ‘‘elasticities’’. Hence, all

‘‘elasticities’’ derived and calculated in this paper in fact are

semi-elasticities.

The own-region elasticity (4) shows that by enhancing its

attractiveness a region will increase its expected number of firms,

and the cross-region elasticity (5) implies that one region’s in-

creased attractiveness to firms will reduce the number of firms

choosing other regions: one region’s gain is another region’s loss.

Moreover, a simple comparison of the two elasticities shows that

small regions (in terms of Pj, the share of firms they host) are pre-

dicted by the conditional logit model to find their own firm counts

to be relatively elastic to changes in their own locational character-

istics, while not affecting firm counts in other regions as much as

large regions.

We now turn from the viewpoint of individual regions to an

analysis of what the conditional logit model implies for the total

number of firms among the J regions. By definition,

EðnÞ ¼
XJ

j¼1

EðnjÞ ¼ n ¼ N: ð6Þ

Hence, the expected total number of firms is equal to the ob-

served total, N, irrespective of regressors and parameters. This

again shows the ‘‘zero sum’’ aspect of the conditional logit model,

where the implied problem is one of allocating an exogenously

fixed number of firms over a set of regions. It also follows logi-

cally that changes in the locational attractiveness of individual re-

gions will not affect the total number of firms. Formally, the

elasticity of the expected total firm count relative to a change

in one of the K locational characteristics of any particular region

j is zero:

�j ¼
@ log EðnÞ

@xjk
¼ 0:

2.1.2. Poisson

The Poisson estimator is based on the assumption that nj is

independently Poisson distributed with region-specific mean

EðnjÞ ¼ e
aþx0

j
b
: ð7Þ

Here too, b can be estimated by maximum likelihood. We can

write the concentrated log likelihood as

6 For recent research on the cross-region effects of region-specific policies aimed at

attracting firms, see, e.g., Greenstone and Moretti (2003), Chirinko and Wilson (2008),

and Wilson (2009).
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log LðbÞ ¼
XJ

j¼1

Njx
0
ibÿ

XJ

j¼1

Nj log
XJ

i¼1

ex
0
i
b

 !" #

ÿ
XJ

j¼1

logNj!ÿ N þ N logN: ð8Þ

When comparing this to (2), the point made by GFW is plain to

see: the log likelihood functions of the two models are identical up

to a constant, and maximum likelihood estimation therefore yields

identical parameter estimates b̂.

In expectation, the share of firms in region j can be written as

Pj ¼
EðnjÞPJ
i¼1EðnjÞ

¼
e
aþx0

j
b

PJ
i¼1e

aþx0
i
b
¼

e
x0
j
b

PJ
i¼1e

x0
i
b
; ð9Þ

which is exactly the same expression as (1), for the conditional logit

model. This equivalence lies at the heart of the GFW result:

Observation 1. [Guimaraes et al., 2003] The log likelihood func-

tions for the conditional logit and the Poisson model are identical

up to a constant, and maximum likelihood estimation therefore

yields identical parameter estimates b̂.

The elasticity of the expected number of firms in region j, E(nj),

with respect to a change in the kth locational characteristic of re-

gion j itself, and by that of another region i– j, is given respectively

by the own-region elasticity

�jj ¼
@ log EðnjÞ

@xjk
¼ bk ð10Þ

and by the cross-region elasticity

�ij ¼
@ log EðniÞ

@xjk
¼ 0: ð11Þ

Comparing these elasticities to their conditional logit equiva-

lents (4) and (5), we observe the following differences.

Observation 2. The Poisson model implies more elastic responses

by firm counts to given changes in own-region characteristics than

the conditional logit model.

Observation 3. Unlike in the conditional logit model, in the Pois-

son model, one region’s change in locational attractiveness has

no impact on the number of firms located among any of the J ÿ 1

other regions.

Hence, even though the estimated parameters b̂ will be invari-

ant to the choice of model, their implied predictions differ starkly.

The conditional logit model implies a zero-sum allocation process

of a fixed number of firms over the J jurisdictions. In contrast, in

the Poisson model new firms are non-rivalrous, in the sense that

adjustment to one regions’s locational characteristics works not

through changes in firm numbers among the J ÿ 1 other regions

but from changes either in the supply of local entrepreneurship

or in firms attracted from or repelled to somewhere outside the

considered set of J regions.

Moving again from the viewpoint of individual regions to an

analysis of the model’s implications for the total number of firms

among the J regions, and using (7), we find that

EðnÞ ¼
XJ

i¼1

EðniÞ ¼
XJ

i¼1

eaþx0
i
b ¼ ea

XJ

i¼1

ex
0
i
b:

Comparing this expression with its conditional logit equivalent

(6), we note that the expected total number of firms is now not gen-

erally equal to the observed total number of firms, N, but depends

on the regressors and parameters.7 The Poisson model thus implies

that a change in a region’s locational attractiveness will affect the

sum of firms active in the J regions. Specifically, the elasticity of the

expected total firm count with respect to a change in one of the K

locational characteristics of any particular region j is given by8

�j ¼
@ log EðnÞ

@xjk
¼

e
x0
j
b

PJ
i¼1e

x0
i
b
bk ¼

EðnjÞ

EðnÞ
bk ¼ Pjbk:

Observation 4. In the Poisson model, an increase (decrease) in one

region’s locational attractiveness increases (decreases) the total of

firms summed across the J regions. In the conditional logit model, a

change in one region’s locational attractiveness leaves the total of

firms summed across the J regions unchanged.

2.1.3. Nested logit

Observations 2–4 show that the two models are the polar cases

of a continuum of relative adjustment margins, ranging from real-

locations purely within the set of alternatives considered (condi-

tional logit) to reallocations purely between that set and some

outside option (Poisson). We now turn to a micro-founded ap-

proach that covers this whole continuum and thus encompasses

the polar cases.

Suppose that firms make two sequential choices. At the first

stage, they choose between locating in one of the J regions consid-

ered (which could stand for ‘‘domestic’’ regions) and an outside op-

tion j = 0 (which could stand for locating ‘‘abroad’’, or for remaining

inactive). If they have chosen to set up in one of the J regions, they

pick one of them at the second stage. Like in the conditional logit

model, firm f’s profit in region j > 0 is determined by a linear func-

tion of the region-specific characteristics xj, such that pfj ¼ x0jcþ v fj.

Firm f’s profit associated with the outside option is given by

pf0 = d + vf0, where d summarizes the exogenously fixed locational

attractiveness of the outside option. The stochastic term vf0 is as-

sumed to follow a generalized extreme value distribution as in

McFadden (1978).9 This leads to a nested logit model with one

degenerate ‘‘nest’’ that includes j = 0 only and one other ‘‘nest’’ that

includes all regions j > 0. This two-stage structure assumes indepen-

dence between vf0 and vfj for all j > 0, and non-negative correlation

1 ÿ k2) across vfj for all j > 0; where 0 < k 6 1, sometimes called the

‘‘log-sum’’ coefficient, measures the importance of the domestic nest

as a whole relative to the outside option.

In this setting, the probability that a particular firm f chooses

the outside option j = 0 is given by

P0 ¼
ed

ed þ
PJ

j¼1e
x0
j
b

� �k ; ð12Þ

and the probability that it chooses a particular region j > 0 among

the J regions of interest is

Pj ¼
e
x0
j
b PJ

i¼1e
x0
i
b

� �kÿ1

ed þ
PJ

i¼1e
x0
i
b

� �k ¼ Pj>0 � Pjjj>0;

where we reparametrize b = c/k. This implies that, unlike in the con-

ditional logit, the estimated regression parameters b̂ are not identi-

cal to the structural parameters of the underlying profit function.

7 Note that the predicted total number of firms at the estimated coefficients and

actual data corresponds to the observed total of firms in the Poisson model just as it

does in the conditional logit model. In symbols, Eðnjâ; b̂Þ ¼ N.
8 We define Pj � E(nj)/E(n)– E(nj/n) in the Poisson model. Using this definition,

Pj ¼ ex
0
j
b
=
PJ

i¼1e
x0
i
b in both the conditional logit and the Poisson model.

9 T h e s p e c i fi c d e n s i t y f u n c t i o n a s s u m e d o v e r { 0 , J } i s

Fðmf Þ ¼ exp ÿ
PJ

j¼1e
ÿmfj=k

� �k
ÿ eÿmf0

� �
.
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The choice probabilities Pj can be decomposed into (a) the prob-

ability of choosing any of the J regions, Pj>0 = 1 ÿ P0, and (b) the

probability of choosing a specific region j given that the firm

chooses to set up in one of the J regions,

Pjjj>0 ¼
e
x0
j
b

PJ
i¼1e

x0
i
b
: ð13Þ

The parameter b can again be estimated by maximum likeli-

hood. We can write the concentrated log likelihood as

log LðbÞ ¼
XJ

j¼1

Njx
0
ibÿ

XJ

j¼1

Nj log
XJ

i¼1

ex
0
i
b

 !" #

þ N0 logðN0Þ þ N

� logðNÞ ÿ ðN þ N0Þ logðN þ N0Þ;

where d and k cancel out when we substitute the first-order condi-

tion @logL/@d = 0 into L(b,d,k).10N is the number of firms locating in

any of the regions j > 0, and N0 is the number of firms choosing the

outside option j = 0.

Observation 5. The log likelihood functions for the conditional

logit, the Poisson and the nested logit model with a single outside

option are identical up to a constant, and maximum likelihood

estimation therefore yields identical parameter estimates b̂.

The ratio (13) is identical to its equivalents in the conditional lo-

git and Poisson models, (1) and (9). This correspondence among

the three models lies at the heart of Observation 5, which extends

the GFW result to the nested logit case with a single outside option.

The parameter vector b is identified and can be estimated with-

out observing N0 because the first-order condition of the concen-

trated likelihood function, @ logL(b)/@ b, is independent of N0. The

parameters d and k, however, are not identified when N0 is not ob-

served because the first-order conditions @ logL(b,d,k)/@d = 0 and

@ logL(b,d,k)/@k = 0 depend on N0 (see footnote 10). Even if N0 were

observed, d and k would not be identified separately, as the two

first-order conditions are identical.

The expected number of firms in region j > 0 is

EðnjÞ ¼ ðnþ n0ÞPj ¼ ðnþ n0Þ
e
x0
j
b PJ

i¼1e
x0
i
b

� �kÿ1

ed þ
PJ

i¼1e
x0
i
b

� �k : ð14Þ

The own-region elasticity of the expected number of firms, E(nj), rel-

ative to locational characteristics is given by

�jj ¼
@ log EðnjÞ

@xjk
¼ ½1ÿ Pjjj>0ð1ÿ kP0Þ�bk; ð15Þ

and the cross-region elasticity is given by

�ij ¼
@ log EðniÞ

@xjk
¼ ÿPjjj>0ð1ÿ kP0Þbk: ð16Þ

We can now compare the own- and cross-region elasticities of

the three models. Simple inspection of elasticities (4), (5), (10),

(11), (15) and (16) leads to the following observation.

Observation 6. The nested logit own-region and cross-region

elasticities lie between their conditional logit and Poisson

counterparts.

Once more, we now move from the analysis of firm counts in

individual regions to the total number of firms that are active in

the J regions. Using (14) and (12), we find that

EðnÞ ¼ ðnþ n0Þ

PJ
j¼1e

x0
j
b

� �k

ed þ
PJ

j¼1e
x0
j
b

� �k ¼ ðnþ n0ÞPj>0:

The expected total number of firms active in the J regions is simply

given by the share of potential firms that decide to become active in

one of those regions. As in the Poisson model, the expected total

number of firms is not generally equal to the observed total number

of firms, N, but depends on the regressors and parameters, including

those for the outside option.11 The elasticity of the expected total

firm count relative to a change in one of the K locational character-

istics of any particular region j is given by

�j ¼
@ log EðnÞ

@xjk
¼

kede
x0
j
b PJ

i¼1e
x0
i
b

� �ÿ1

bk

ed þ
PJ

i¼1e
x0
i
b

� �k ¼ kP0Pjjj>0bk:

Observation 7. Like the Poisson, the nested logit model implies

that a change in a region’s locational attractiveness will affect the

total of firms summed across the J regions.

Here, the responsiveness of the aggregate firm number is due to

the effect on the decisions taken by firms that would have chosen

the outside option in the absence of a change in regional

attractiveness.

2.1.4. A synthesis of the three models

We can now pull together the salient features of the three mod-

els. First, we consider the impact of a change in the attractiveness of

an individual region on the number of firms in that region and

across the J ÿ 1 remaining regions. Table 1 gathers the own-region,

cross-region and aggregate elasticities implied by the threemodels.

In order to compare these elasticities, we define q = 1 ÿ kP0
which satisfies 0P qP 1 under the standard nested logit assump-

tion 0 < k 6 1. We call q the rivalness parameter. It allows us to

write the nested logit elasticities as a linear combination of their

conditional logit and Poisson equivalents: �nlogitjj ¼ q�clogitjj þ

ð1ÿ qÞ�Poissonjj ; �nlogitij ¼ q�clogitij and �nlogitj ¼ ð1ÿ qÞ�Poissonj . The

rivalness parameter therefore acts as a summary measure of the

position of the data generating process between the two polar

cases, conditional logit (q = 1) and Poisson (q = 0). One may think

Table 1

Comparing implied elasticities (case A).

Conditional logit Nested logit Poisson

�jj ¼
@ log EðnjÞ

@xjk

(1 ÿ Pjjj>0)bk [1 ÿ Pjjj>0(1 ÿ kP0)]bk bk

�ij ¼
@ logEðniÞ

@xjk

ÿPjjj>0bk ÿPjjj>0(1 ÿ kP0)bk 0

�j ¼
@ log EðnÞ

@xjk

0 kP0Pjjj>0bk Pjjj>0bk

Notes: Pjjj>0 = E(nj)/E(n), P0 = E(n0)/E(n + n0).

10 The concentrated likelihood is obtained as follows:

log Lðb; d; kÞ ¼ N0 log P0 þ
XJ

j¼1

Nj log Pj

¼ N0 log
ed

ed þ
PJ

i¼1e
x0
j
b

� �k

0

B@

1

CAþ
XJ

j¼1
Nj log

e
x0
j
b PJ

i¼1e
x0
i
b

� �kÿ1

ed þ ð
PJ

i¼1e
x0
i
bÞk

0

B@

1

CA

2

64

3

75:

The first-order condition with respect to d is @ log L=@d ¼ N0 ÿ ðN þ N0Þe
d=

ed þ
PJ

i¼1e
x0
i
b

� �k� �
¼ 0. The estimated d̂ can therefore be expressed as a function of

the estimated b̂ and k̂: ed̂ ¼ N0=N �
PJ

i¼1e
x0
i
b

� �k
. When we substitute ed̂ in logL(b,d,k),

k also cancels out because the first-order condition with respect to k is automatically

satisfied as o logL/ok = o logL/od = 0.

11 As in the Poisson and conditional logit models, the predicted total number of

firms among the J regions at the estimated coefficients and actual data corresponds to

the observed total: Eðnjb̂; d̂; k̂Þ ¼ N.
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of q as capturing the relative importance of the outside option: as

q? 0, competition among the J regions becomes unimportant rel-

ative to the weight of the outside option, while with q? 1, the

outside option becomes negligible and any reallocations have to

occur within the set of the J regions.

We can also establish rankings of the elasticities implied by the

three models. Provided that b– 0, the ranking of own-region elas-

ticities is (c.f. Observations 2 and 6)

�Poissonjj

���
��� > � nlogit

jj

���
��� > �clogitjj

���
��� > 0;

while the ranking of cross-regions elasticities is just the reverse (c.f.

Observations 3 and 6),

�clogitij

���
��� > � nlogit

ij

���
��� > �Poissonij

���
��� ¼ 0:

and the ranking of aggregate elasticities is again (c.f. Observations 4

and 7)

�Poissonj

���
��� > � nlogit

j

���
��� > �clogitj

���
��� > 0:

An alternative way of comparing the three models is to inspect

the predicted counts.12 In all three models the expected number of

firms in region j can be written as

EðnjÞ ¼ m � e
x0
j
b

where the multiplier m is given by

m ¼ nPJ

i¼1
e
x0
i
b

in the conditional logit;

m ¼ ea ¼ constant in the Poisson;

m ¼ nþn0PJ

i¼1
e
x0
i
b
�

PJ

i¼1
e
x0
i
b

ÿ �k

edþ
PJ

i¼1
e
x0
i
b

ÿ �k in the nested logit:

Nevertheless, given the data, the three models predict the same

number of firms, as the multiplier is estimated as m̂ ¼ N=
PJ

i¼1e
x0
i
b̂

in all three cases.13 This reflects the GFW equivalence in Observa-

tion 1 and our equivalence in Observation 5. However, the multi-

plier m reacts differently to changes in locational characteristics

depending on the estimator chosen, in line with our Observations

2, 3, 4, 6 and 7.

2.2. Case B: industry-specific locational determinants

Consider now that we observe K characteristics xsj for every re-

gion j and industry s. Hence, we again do not observe firm-specific

regional attributes, but we now allow for these attributes to differ

across groups of firms, best thought of as industries. We maintain

the notation xj for the subset of locational determinants that are

constant across industries. Furthermore, njs is the number of firms

in region j and industry s, ns is the observed number of industry-s

firms across all regions, n is the total number of firms, and N stands

for the corresponding observed firm count in the sample.

The grouped conditional logit model is given by the probability

that a given firm f of industry s chooses region j rather than another

region:

Pjjf ¼ Pjjs ¼
e
x0
sj
b

PJ
i¼1e

x0
si
b
;

where
P

jPjjf ¼ 1 and Pjjs is the probability for a particular firm to

choose region j given that the firm belongs to industry s.

The grouped Poisson model is given by

EðnsjÞ ¼ e
asþx0

sj
b
;

where as is an industry-specific constant.

Finally, the grouped nested logit model is given by the probabil-

ity that a given firm f of industry s chooses either the outside op-

tion j = 0,

P0js ¼
eds

eds þ
PJ

j¼1e
x0
sj
c=k

� �k ¼
eds

eds þ
PJ

j¼1e
x0
sj
b

� �k ;

or a particular domestic region j > 0,

Pjjs ¼
e
x0
sj
b PJ

i¼1e
x0
si
b

� �kÿ1

eds þ
PJ

i¼1e
x0
si
b

� �k ¼ Pj>0js � Pjjj>0;s ¼ ð1ÿ P0jsÞPjjj>0;s;

where ds is an industry-specific constant, and b = c/k. Pj>0js = 1 ÿ P0js
is the probability that a given industry-s firm chooses any domestic

region j > 0, and

Table 2

Comparing implied elasticities (case B).

Conditional logit Nested logit Poisson

Region-industry specific regressor xsjk:

(a) @ log EðnsjÞ

@xsjk

bk (1 ÿ Pjjj>0,s) bk[1 ÿ Pjjj>0,s(1 ÿ kP0js)] bk

(b) @ log EðnsiÞ

@xsjk

ÿbk Pjjj>0,s ÿbkPjjj>0,s(1 ÿ kP0js) 0

(c) @ log EðnsÞ

@xsjk

0 bkPjjj>0,skP0js bkPjjj>0,s

(d) @ log EðnjÞ

@xsjk

bk (1 ÿ Pjjj>0,s)Psjj bk[1 ÿ Pjjj>0,s(1 ÿ k P0js)]Psjj bkPsjj

(e) @ log EðniÞ

@xsjk

ÿbk Pjjj>0,sPsji ÿbkPjjj>0,s(1 ÿ k P0js)Psji 0

(f) @ log EðnÞ

@xsjk

0 bk PsjjPjkP0js bkPsjjPjjj>0

Region specific regressor xjk:

(g) @ log EðnjÞ

@xjk

bk
PS

s¼1ð1ÿ Pjjj>0;sÞPsjj bk
PS

s¼1½1ÿ Pjjj>0;sð1ÿ kP0jsÞ�Psjj
bk

(h) @ log EðniÞ

@xjk

ÿbk
PS

s¼1Pjjj>0;sPsji ÿbk
PS

s¼1Pjjj>0;sð1ÿ kP0jsÞPsji
0

(i) @ log EðnÞ

@xjk

0 bkPj

PS
s¼1ðkP0jsPsjjÞ bkPjjj>0

Notes: Pjjj>0,s = E(nsj)/E(ns), P0js = E(ns0)/E(ns + ns0), Psjj = E(nsj)/E(nj). Psjj is the fraction of firms in industry s in a given region j.

12 We thank an anonymous referee for suggesting this elegant alternative approach.
13 This is easily verified by plugging in the respective first-order conditions of the

unconcentrated likelihood functions: eâ ¼ N=
PJ

i¼1e
x0
i
b̂ and ed̂ ¼ N0=N

PJ
i¼1e

x0
i
b̂

� �k̂
.
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Pjjj>0;s ¼
e
x0
sj
b

PJ
i¼1e

x0
si
b

ð17Þ

is the probability that such a firm chooses a particular domestic re-

gion conditional on not choosing the outside option.

As in case A, the three models are observationally equivalent in

a cross section of domestic firm choices and yield identical esti-

mates for the parameter vector b. This has been shown by GFW

for the grouped conditional logit and the grouped Poisson models,

and we show it in the Appendix for the grouped nested logit

model.

Table 2 summarizes the implied elasticities in the three

grouped models (see the Appendix for derivations). As in case A,

the elasticities in the grouped nested logit model are (industry-

specific) linear combinations of their conditional logit and Poisson

equivalents: �nlogit:: ¼ qs� clogit
:: þ ð1ÿ qsÞ�Poisson:: where qs = 1 ÿ kP0js.

3. Estimation

3.1. Elasticity bounds

We have shown that estimation of any of the three models

will yield identical parameter estimates b̂. The additional param-

eters k and d in the nested logit model are not identified but

irrelevant for the estimation of b. Hence, it is impossible to dis-

criminate formally between these three model based on cross-

section data. And yet, the implied elasticities differ substantially.

In previous research, reported elasticities were based either on

the conditional logit model or the Poisson model, without justifi-

cation of the particular choice made or, mistakenly in this respect,

by referring to the equivalence of the two models as established

by GFW.

What can researchers do if they are not willing to make this

choice by assumption but rely on cross-sectional data? We pro-

pose in this situation that one calculate the elasticities of both

the conditional logit and the Poisson model and report these

predictions as bounds for the true effects. As shown in Observa-

tion 6, intermediate values can be rationalized by a nested logit

model.

The computation of both conditional logit and Poisson elastic-

ities requires that one calculate predicted probabilities. In terms

of case A (Table 1), the predicted probability is obtained as

follows:

bP jjj>0 ¼
e
x0
j
b̂

PJ
i¼1e

x0
i
b̂
; ð18Þ

while for case B (Table 2), three predicted probabilities are to be

computed:

bP jjj>0;s ¼
e
x0
sj
b̂

PJ
i¼1e

x0
si
b̂
; ð19Þ

bP sjj ¼
e
x0
sj
b̂þâs

PS
r¼1e

x0
rj
b̂þâr

¼
Ns
bP jjs

NbP jjj>0

; ð20Þ

bP jjj>0 ¼

PS
s¼1e

x0
sj
b̂þâs

PS
s¼1

PJ
i¼1e

x0
si
b̂þâs

¼

PS
s¼1Ns

bP jjs

N
: ð21Þ

where âs ¼ log Ns=
P

je
x0
js
b̂

� �h i
from the first-order condition of the

unconcentrated Poisson likelihood function.

3.2. An example

By way of an illustration, we take the data on location choices in

Portugal by foreign-owned plants used in Guimaraes et al. (2000,

2003), and we report the elasticities implied by the coefficients

of their regression model. The data cover a cross-section of 758

location choices among 275 Portuguese regions by firms belonging

to one of 151 industries.14 Their region-industry level regressor of

main interest, xsjk, is ‘‘industry-specific agglomeration’’, defined as

the share of regional employment in the same industry as the rele-

vant firm. Their region level regressor of main interest, xjk, is ‘‘total

manufacturing agglomeration’’, defined as the log of aggregate man-

ufacturing employment per square kilometer.

Taking their estimated parameters and computing the empirical

probabilities (18)–(21), we can calculate all the implied elasticities

of Table 2. Since the probabilities (18)–(21) vary by region and

industry, we need to select specific cases for the computation of

elasticities. We provide illustrations for two base regions j: Lisbon,

the largest region in terms of bP jjj>0, and Oleiros, the smallest region

in terms of bP jjj>0 that still had non-zero firm counts in the larger

industry considered.15

Table 3 shows the implied elasticities for changes in a region-

industry specific regressor and in a region-specific regressor. We

can take these estimates to illustrate Observations 2 to 4.16

Table 3

Comparing implied elasticities in an example of case B.

Large region j Small region j

CL Poisson CL Poisson

Region-industry specific regressor xsjk:

(a) @ log EðnsjÞ

@xsjk

2.9290 3.1883 3.18778 3.18832

(0.1978) (0.2364) (0.23632) (0.23640)

(b) @ log EðnsiÞ

@xsjk

ÿ0.2593 0 ÿ0.00054 0

(0.0815) – (0.00014) –

(c) @ log EðnsÞ

@xsjk

0 0.2593 0 0.00054

– (0.0815) – (0.00014)

(d) @ log EðnjÞ

@xsjk

0.1110 0.1208 0.09624 0.09626

(0.0110) (0.0127) (0.01137) (0.01137)

(e) @ log EðniÞ

@xsjk

ÿ0.0095 0 ÿ0.00002 0

(0.0031) – (0.00001) –

(f) @ log EðnÞ

@xsjk

0 0.0106 0 0.00002

– (0.0019) – (0.00000)

Region specific regressor xjk:

(g) @ log EðnjÞ

@xjk

0.3873 0.42577 0.42548 0.42577

(0.0475) (0.0508) (0.05075) (0.05076)

(h) @ log EðniÞ

@xjk

ÿ0.0378 0 ÿ0.00004 0

(0.0048) – (0.00001) –

(i) @ log EðnÞ

@xjk

0 0.0374 0 0.00010

– (0.0066) – (0.00001)

Notes: large region: j = Lisbon; small region: j = Oleiros; i = Porto in rows (e) and (h);

k = ‘‘industry-specific agglomeration’’ in rows (a–f), k = ‘‘total manufacturing

agglomeration’’ in rows (g–i); industry: s = ISIC 351 (Industrial Chemicals) in 1989

in rows (a–f); any industry in rows (g–i). Bootstrapped robust standard errors in

parentheses, 300 replications, clustered by industries.

14 We follow GFW by referring to industry-year pairs as ‘‘industries’’. The 151

industries in their data set are combinations of 27 three-digit manufacturing sectors

and seven sample years, ranging from 1985 to 1991.
15 Where a comparison region i needs to be specified for the computation of cross

elasticities, we choose Porto, the second largest region in the data set. Where an

industry s needs to be specified, we choose Industrial Chemicals (ISIC 351) in 1989,

the largest sector-year pair in the dataset (31 observed choices, i.e. 4 percent of the

total of 758 choices).
16 A note on the estimation of standard errors. In the Poisson model with group

(industry) fixed effects, large sample properties are usually derived assuming a large

number of groups, S ?1. In the conditional logit model, one typically assumes a

large number of individuals, N ? 1. The conventional standard errors will therefore

in practice differ between the two models. Clustering at the group level, however, will

produce identical standard errors. Such robust standard errors can either be

estimated using asymptotic theory (cluster generalization of Eicker–Huber–White)

or through block-wise bootstrapping.
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� Observation 2: Own-region elasticities are larger in the Poisson

model than in the conditional logit (rows (a), (d) and (g)). We

can see that the difference between implied own-region elastic-

ities is non-trivial for the large region (some 10 percent) but

very small for the small region (less than 0.1 percent). This illus-

trates that the difference between implied own-region elastici-

ties of the two models vanishes as the number of regions grows

large and individual regions therefore become small.

� Observation 3: All Poisson cross-region elasticities are zero

(rows (b), (e) and (h)).

� Observation 4: In the conditional logit model, the total number

of firms (across all of Portugal) is invariant to changes in the val-

ues of xsjk or xjk whereas in the Poisson model the total changes

with xsjk or xjk (rows (c), (f) and (i)). The effect on the total num-

ber of firms of a given change in xsjk is stronger if the change

occurs in a large region.

These computations illustrate the qualitatively different predic-

tions implied by the conditional logit and Poisson models. With

J = 275 spatial alternatives and s = 151 industries, the underlying

data set is highly disaggregated, implying relatively modest quan-

titative differences between implied elasticities. Nonetheless, even

here some of the differences are far from negligible. Perhaps the

most striking difference appears in row (c) of Table 3. A one-unit

change in xsjk of Lisbon leaves the number of Portuguese plants

in industry s unchanged in the conditional logit framework, while

it increases by up to 29 percent in the Poisson model. Policy mak-

ers ought not to ignore a difference of such magnitude.

4. Conclusions

We show that the three standard location choicemodels – condi-

tional logit, nested logit and Poisson – are observationally equiva-

lent in terms of cross-section estimation yet imply starkly

different predictions.

Take a corporate tax cut in a particular region. Provided that

this is perceived by firms as making that region more attractive,

all three models imply that the region itself will see an increase

in its number of firms. We show that the magnitude of the implied

increase differs: it is largest if the world is properly represented by

the Poisson model, smallest if the world conforms with the condi-

tional logit, and somewhere in-between if the world is nested logit.

In a Poisson world, the tax cut will have no impact on firm counts

in any other of regions within the data set. It will, however, pull

firms away from other regions in the conditional logit and the

nested logit cases. As the total number of firms is fixed in the con-

ditional logit, the sum of the firms pulled away from the other

regions is the same as the increase in the number of firms in the

tax-cutting region itself. The nested logit again represents an inter-

mediate case, with some of the attracted firms relocating from

elsewhere within the data set, implying that regional corporate

tax bases are ‘‘rival’’; and some firms appearing from outside that

set, implying a ‘‘non-rival’’ tax base. The same logic can be applied

to residential choices of private households with respect, for in-

stance, to changes in local property tax rates.

Empirical researchers should be aware of the interpretational

ambiguity affecting estimated parameters in standard location

choice models, particularly if the number of locations and

industries distinguished in the data is small. It can therefore be use-

ful to report both conditional logit and Poisson elasticity estimates

as bounds on the effects implied by the estimated parameters.

Acknowledgments

We are grateful to Paulo Guimaraes and his coauthors for allow-

ing us to use their data set, and to participants in seminars at

Pompeu Fabra and at the University of Barcelona as well as at

the 2009 ETSG annual conference in Rome and at the 2009 annual

conference of the Urban Economics Association in San Francisco for

useful comments. Financial support from the Spanish Ministry of

Science and Innovation (Ramon y Cajal convocatoria 2006 and

Consolider SEJ2007-64340), the Swiss National Science Foundation

(Grants PDFMP1-123133, CRSI11_130648; NCCR Trade Regula-

tion), and from the EU’s Sixth Framework Program (‘‘Micro-Dyn’’

project) is gratefully acknowledged.

Appendix A. Derivations for case B

A.1. Grouped conditional logit

The conditional logit model for grouped data is given by the

probability that a given firm f of industry s chooses region j

Pjjf ¼ Pjjs ¼
e
x0
sj
b

PJ
i¼1e

x0
si
b
:

The log likelihood function is

log LðbÞ ¼
XS

s¼1

XJ

j¼1

NsjPjjs ¼
XS

s¼1

XJ

j¼1

Nsjx
0
sjbÿ

XJ

j¼1

Nsj log
XJ

i¼1

ex
0
si
b

" #( )
:

The expected number of firms in region j and industry s is

EðnsjÞ ¼ nsPjjs ¼
nse

x0
sj
b

PJ
i¼1e

x0
si
b
:

and the corresponding own-region and cross-region elasticities

within industry s are, respectively,

@ log EðnsjÞ

@xsjk
¼ ð1ÿ PjjsÞbk;

@ log EðnsiÞ

@xsjk
¼ ÿPjjsbk:

The expected number of firms in industry s is

EðnsÞ ¼
XJ

j¼1

EðnsjÞ ¼ ns ¼ Ns;

and the corresponding elasticity within industry s is

@ log EðnsÞ

@xsjk
¼ 0:

The expected number of firms in region j is

EðnjÞ ¼
XS

s¼1

EðnsjÞ ¼
XS

s¼1

nsPjjs ¼
XS

s¼1

nse
x0
sj
b

PJ
i¼1e

x0
si
b
:

The corresponding own-region and cross-region elasticities are for a

region-industry specific shock xsjk are

@ log EðnjÞ

@xsjk
¼

@ log EðnsjÞ

@xsjk
�
EðnsjÞ

EðnjÞ
¼ ð1ÿ PjjsÞPsjjbk;

@ log EðniÞ

@xsjk
¼

@ log EðnsiÞ

@xsjk
�
EðnsiÞ

EðniÞ
¼ ÿPjjsPsjibk;

where Psjj = E(nsj)/E(nj).

The own-region and cross-region elasticities for a region-spe-

cific shock xjk are
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@ log EðnjÞ

@xjk
¼
XS

s¼1

@ log EðnsjÞ

@xjk
�
EðnsjÞ

EðnjÞ

� �
¼ bk

XS

s¼1

ð1ÿ PjjsÞPsjj;

@ log EðniÞ

@xjk
¼
XS

s¼1

@ log EðnsiÞ

@xjk
�
EðnsiÞ

EðniÞ

� �
¼ ÿbk

XS

s¼1

PjjsPsji:

The expected total number of firms in all regions and industries is

EðnÞ ¼
XS

s¼1

XJ

j¼1

EðnjsÞ ¼
XS

s¼1

EðnsÞ ¼ n;

and the corresponding elasticities for a region-industry specific

shock xsjk and a region-specific shock xjk are, respectively,

@ log EðnÞ

@xsjk
¼ 0;

@ log EðnÞ

@xjk
¼ 0:

A.2. Grouped Poisson

The Poisson model for grouped data is given as

EðnsjÞ ¼ ksj ¼ e
asþx0

sj
b
;

where as is an industry-specific constant. The concentrated log like-

lihood function is

log LðbÞ ¼
XS

s¼1

XJ

j¼1

Nsjx
0
ibÿ

XJ

j¼1

Nsj log
XJ

i¼1

ex
0
si
b

 !" #(

ÿ
XJ

j¼1

logNsj!þ Ns logNs

)
ÿ N:

In expectation, the share of firms in region j for any given industry s

is given by

Pjjs ¼
EðnsjÞPJ
i¼1EðnsjÞ

¼
e
asþx0

sj
b

PJ
i¼1e

asþx0
si
b
¼

e
x0
sj
b

PJ
i¼1e

x0
si
b
:

The own-region and cross-region elasticities within industry s are,

respectively,

@ log EðnsjÞ

@xsjk
¼ bk;

@ log EðnsiÞ

@xsjk
¼ 0:

The expected number of firms in industry s is

EðnsÞ ¼
XJ

i¼1

EðnsiÞ ¼
XJ

i¼1

easþx0
si
b ¼

XJ

i¼1

EðnsiÞ ¼
XJ

i¼1

easþx0
si
b ¼ eas

XJ

i¼1

ex
0
si
b;

and the corresponding elasticity within industry s is

@ log EðnsÞ

@xsjk
¼

e
x0
sj

PJ
i¼1e

x0
si
b
bk ¼ Pjjsbk:

The expected number of firms in region j is

EðnjÞ ¼
XS

s¼1

EðnsjÞ ¼
XS

s¼1

easþx0
si
b:

The corresponding own-region and cross-region elasticities for a re-

gion-industry specific shock xsjk are

@ log EðnjÞ

@xsjk
¼

@ log EðnsjÞ

@xsjk
�
EðnsjÞ

EðnjÞ
¼ Psjjbk;

@ log EðniÞ

@xsjk
¼

@ log EðnsiÞ

@xsjk
�
EðnsiÞ

EðniÞ
¼ 0;

where Psjj = E(nsj)/E(nj).

The own-region and cross-region elasticities for a region-spe-

cific shock xjk are

@ log EðnjÞ

@xjk
¼
XS

s¼1

@ log EðnsjÞ

@xjk
�
EðnsjÞ

EðnjÞ

� �
¼ bk;

@ log EðniÞ

@xjk
¼
XS

s¼1

@ log EðnsiÞ

@xjk
�
EðnsiÞ

EðniÞ

� �
¼ 0:

The expected total number of firms in all regions and industries is

EðnÞ ¼
XS

s¼1

XJ

j¼1

EðnjsÞ ¼
XS

s¼1

EðnsÞ ¼
XS

s¼1

eas
XJ

i¼1

ex
0
si
b

" #
;

and the corresponding elasticities for a region-industry specific

shock xsjk and a region-specific shock xjk are, respectively,

@ log EðnÞ

@xsjk
¼

@ log EðnsjÞ

@xsjk
�
EðnsjÞ

EðnÞ
¼ PsjjPjbk;

@ log EðnÞ

@xjk
¼

@ log EðnjÞ

@xjk
�
EðnjÞ

EðnÞ
¼ Pjbk;

where Pj = E(nj)/E(n).

A.3. Grouped nested logit

The nested logit model for grouped data is given by the probabil-

ity that firm f of industry s chooses the outside option j = 0 or re-

gion j > 0:

P0js ¼
eds

eds þ
PJ

j¼1e
x0
sj
c=k

� �k ¼
eds

eds þ
PJ

j¼1e
x0
sj
b

� �k ;

Pjjs ¼
e
x0
sj
b PJ

i¼1e
x0
si
b

� �kÿ1

eds þ
PJ

i¼1e
x0
si
b

� �k ¼ Pj>0js � Pjjj>0;s ¼ ð1ÿ P0jsÞPjjj>0;s;

where ds is an industry-specific constant, b = c /k and

Pjjj>0;s ¼
e
x0
sj
b

PJ
i¼1e

x0
si
b
:

The concentrated log likelihood function is

log LðbÞ ¼
XS

s¼1

XJ

j¼1

Nsjx
0
sjbÿ

XJ

j¼1

Nsj log
XJ

i¼1

ex
0
si
b

" #(

þ Ns0 logðNs0Þ þ Ns logðNsÞ ÿ ðNs þ Ns0Þ logðNs þ Ns0Þ

)
:

The expected number of firms in domestic region j > 0 and industry

s is

EðnsjÞ ¼ ðns þ ns0ÞPjjs ¼ ðns þ ns0Þð1ÿ P0jsÞPjjj>0;s;

and the corresponding own-region and cross-region elasticities

within industry s are, respectively,
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@ log EðnsjÞ

@xsjk
¼ ½1ÿ Pjjj>0;sð1ÿ kP0jsÞ�bk;

@ log EðnsiÞ

@xsjk
¼ ÿPjjj>0;sð1ÿ kP0jsÞbk:

The expected number of all domestic firms in industry s is

EðnsÞ ¼
XJ

j¼1

EðnsjÞ ¼ ðns þ ns0Þð1ÿ P0jsÞ;

and the corresponding elasticity within industry s is

@ log EðnsÞ

@xsjk
¼ kP0jsPjjj>0;sbk:

The expected number of firms in domestic region j is

EðnjÞ ¼
XS

s¼1

EðnsjÞ ¼
XS

s¼1

ðns þ ns0ÞPjjs:

The corresponding own-region and cross-region elasticities for a

region-industry specific shock xsjk are

@ log EðnjÞ

@xsjk
¼

@ log EðnsjÞ

@xsjk
�
EðnsjÞ

EðnjÞ
¼ ½1ÿ Pjjj>0;sð1ÿ kP0jsÞ�Psjjbk;

@ log EðniÞ

@xsjk
¼

@ log EðnsiÞ

@xsjk
�
EðnsiÞ

EðniÞ
¼ ÿPjjj>0;sð1ÿ kP0jsÞPsjibk;

where Psjj = E(nsj)/E(nj).

The own-region and cross-region elasticities for a region-

specific shock xjk are

@ logEðnjÞ

@xjk
¼
XS

s¼1

@ logEðnsjÞ

@xjk
�
EðnsjÞ

EðnjÞ

� �
¼ bk

XS

s¼1

½1ÿPjjj>0;sð1ÿkP0jsÞ�Psjj;

@ logEðniÞ

@xjk
¼
XS

s¼1

@ logEðnsiÞ

@xjk
�
EðnsiÞ

EðniÞ

� �
¼ÿbk

XS

s¼1

Pjjj>0;sð1ÿkP0jsÞPsji:

The expected total number of firms in all domestic regions and

industries is

EðnÞ ¼
XS

s¼1

XJ

j¼1

EðnjsÞ ¼
XJ

j¼1

EðnjÞ;

and the corresponding elasticities for a region-industry specific

shock xsjk and a region-specific shock xjk are, respectively,

@ logEðnÞ

@xsjk
¼

@ logEðnsjÞ

@xsjk
þ
X

i–j;i>0

@ logEðnsiÞ

@xsjk

" #
�
EðnsjÞ

EðnÞ
¼ bkkP0jsPsjjPj;

@ logEðnÞ

@xjk
¼

@ logEðnjÞ

@xjk
þ
X

i–j;i>0

@ logEðniÞ

@xjk

" #
�
EðnjÞ

EðnÞ
¼ bkPj

XS

s¼1

ðkP0jsPsjjÞ;

where Pj = E(nj)/E(n).
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