THE “CORE-PERIPHERY” MODEL OF THE NEW ECONOMIC GEOGRAPHY

Marius Brülhart

1 Basic setup

- 2 regions/countries: 1, 2
- 2 sectors: \(M, F \) ("manufacturing", "farming")
- \(M \): monopolistically competitive (horizontally differentiated products: "varieties")
- \(F \): perfectly competitive (homogenous product)
- \(M \): iceberg trade costs: for \(T > 1 \) units of the good shipped, 1 unit arrives
- \(F \): freely traded
- 2 sector-specific production factors: \(L_M, L_F \)
 \[
 L = L_M + L_F = L_{M1} + L_{M2} + L_{F1} + L_{F2}
 \]
 \[
 \frac{L_M}{L_F} = \gamma
 \]
 \[
 \frac{L_{M1}}{L_{M2}} = \lambda_1, \quad \frac{L_{M2}}{L_{M1}} = \lambda_2
 \]
 \[
 \frac{L_{F1}}{L_{F2}} = \phi_1, \quad \frac{L_{F2}}{L_{F1}} = \phi_2
 \]
- \(L_M \) mobile across regions \(\implies \lambda_1, \lambda_2 \) endogenous (main variable of interest!)
- \(L_F \) immobile across regions \(\implies \phi_1, \phi_2 \) exogenous
- \(F \) assumed as numéraire sector: price per unit = wage rate = 1
2 Demand

Utility of the representative consumer:

\[U = F^{1-\delta} M^\delta, \quad 0 < \delta < 1, \]

\[M = \left(\sum_{i=1}^{N} c_i^\rho \right)^{\frac{\rho}{\rho-1}}, \quad 0 < \rho < 1, \tag{1} \]

where \(c \) represents the quantity consumed and \(i \in \{1, \ldots, N\} \) denotes varieties of the differentiated good \(M \).

Hence, with symmetric varieties/firms, there are external benefits to the size of the \(M \) sector:

\[M = (Ne^\rho)^\frac{1}{\rho} = N^{\frac{1}{\rho} - 1}(Ne), \]

i.e. utility \(M \) increases faster than the claims on real resources from expansion of the sector, \(Ne \) (as \(N^{\frac{1}{\rho} - 1} > 1 \)).

The representative consumer’s budget constraint for \(M \):

\[\sum_{i=1}^{N} \rho_i c_i = \delta Y. \tag{2} \]

Demand for variety \(j \) by a representative consumer (maximise eq.(1) s.t. eq.(2), see Brakman et al., 2001, pp. 70f.):

\[c_j = p_j^{-\epsilon} \left(I^{-1} \delta Y \right), \]

where:

\[I \equiv \left(\sum_{i=1}^{N} p_i^{1-\epsilon} \right)^{\frac{1}{1-\epsilon}}; \quad M = \frac{\delta Y}{I}; \quad \epsilon = \frac{1}{1-\rho} > 1. \]

Real wage:

\[w = \frac{W}{F}, \]

where \(W \) is the “nominal” wage, in terms of \(F \).
3 Supply

Production function for F:

$$F = (1 - \gamma)L.$$

Firms’ production function in the M sector:

$$L_{M_1} = \alpha + \beta x_i.$$

Firms’ profit function in the M sector:

$$\pi_i = p_i x_i - W(\alpha + \beta x_i).$$

Constant price-elasticity of demand $\epsilon \implies$ mark-up pricing (MR=MC):

$$p \left(1 - \frac{1}{\epsilon} \right) = \beta W, \text{ or } p = \beta \frac{W}{\rho}.$$

Free entry \implies zero-profits \implies

- firm scale:

$$x = \frac{\alpha (\epsilon - 1)}{\beta},$$

- per-firm labour requirement:

$$l = \alpha \epsilon,$$

- no. of varieties i:

$$N = \frac{\gamma L}{l} = \frac{\gamma L}{\alpha \epsilon}.$$
4 Equilibrium

Six equilibrium equations, six endogenous variables:

- **Incomes:**
 \[Y_1 = \lambda_1 W_1 \gamma L + \phi_1 (1 - \gamma)L \]
 \[Y_2 = \lambda_2 W_2 \gamma L + \phi_2 (1 - \gamma)L \]

- **Price indices:**
 \[I_1 = \left(\frac{\beta}{\rho} \right) \left(\frac{\gamma L}{\alpha e} \right)^{\frac{1}{1-\epsilon}} \left(\lambda_1 W_1^{1-\epsilon} + \lambda_2 T^{1-\epsilon} W_2^{1-\epsilon} \right)^{\frac{1}{1-\epsilon}} \]
 \[I_2 = \left(\frac{\beta}{\rho} \right) \left(\frac{\gamma L}{\alpha e} \right)^{\frac{1}{1-\epsilon}} \left(\lambda_2 W_2^{1-\epsilon} + \lambda_1 T^{1-\epsilon} W_1^{1-\epsilon} \right)^{\frac{1}{1-\epsilon}} \]

- **Wages:**
 \[W_1 = \rho^{3-\rho} \left(\frac{\delta}{(e-1)\alpha} \right)^{\frac{1}{2}} (Y_1 I_1^{-1} + Y_2 T^{1-\epsilon} I_2^{1-\epsilon})^{\frac{1}{2}} \]
 \[W_2 = \rho^{3-\rho} \left(\frac{\delta}{(e-1)\alpha} \right)^{\frac{1}{2}} (Y_2 I_2^{-1} + Y_1 T^{1-\epsilon} I_1^{1-\epsilon})^{\frac{1}{2}} \]

endogenous variables: \(Y_1, Y_2, I_1, I_2, W_1, W_2 \)
exogenous variables: \(L, \alpha, \beta, \gamma, \delta, \phi, \rho, \epsilon, \tau \)
short-run exogenous, long-run endogenous: \(\lambda_1, \lambda_2 \)

→ highly non-linear system \(\Rightarrow \) use simulations

Long-run equilibrium:

- \(w_1 = w_2 \) ("interior solution", symmetric equilibrium if regions 1 and 2 are identical), or
- \(\lambda_1 = 1, w_1 \geq w_2 \) (full agglomeration in region 1, "core-periphery outcome"), or
- \(\lambda_2 = 1, w_1 \leq w_2 \) (full agglomeration in region 2, "core-periphery outcome").

- Law of motion: \(\Delta \lambda_1 = -\Delta \lambda_2 = \eta \left(\frac{w_1}{w_2} \right) \), where \(\eta \) represents the “speed of adjustment”