THE “CORE-PERIPHERY” MODEL OF THE NEW ECONOMIC GEOGRAPHY

Economics of European Integration, Marius Brülhart

1 Basic setup

- 2 regions/countries: 1, 2
- 2 sectors: M, F (“manufacturing”, “farming”)
- M: monopolistically competitive (horizontally differentiated products: “varieties”)
- F: perfectly competitive (homogenous product)
- M: iceberg trade costs: for $T > 1$ units of the good shipped, 1 unit arrives
- F: freely traded
- 2 sector-specific production factors: L_M, L_F
 \[
 \begin{align*}
 L &= L_M + L_F = L_{M1} + L_{M2} + L_{F1} + L_{F2} \\
 \frac{L_M}{L} &= \gamma \\
 \frac{L_M}{L_M} &= \lambda_1, \quad \frac{L_M}{L_M} &= \lambda_2 \\
 \frac{L_F}{L_F} &= \phi_1, \quad \frac{L_F}{L_F} &= \phi_2 \\
 \end{align*}
 \]
- L_M mobile across regions $\implies \lambda_1, \lambda_2$ endogenous (main variable of interest!)
- L_F immobile across regions $\implies \phi_1, \phi_2$ exogenous
- F assumed as numéraire sector: price per unit = wage rate = 1
2 Demand

Utility of the representative consumer:

\[U = F^{1-\delta} M^\delta, 0 < \delta < 1, \]

\[M = \left(\sum_{i=1}^{N} c_i^\rho \right)^\frac{1}{\rho}, 0 < \rho < 1, \] \hspace{1cm} (1)

where \(c \) represents the quantity consumed and \(i \in \{1, ..., N\} \) denotes varieties of the differentiated good \(M \).

Hence, with symmetric varieties/firms, there are external benefits to the size of the \(M \) sector:

\[M = (Nc^\rho)^\frac{1}{\rho} = N^{\frac{1}{\rho}}c = N^{\frac{1}{\rho} - 1} (Nc), \]

i.e. utility \(M \) increases faster than the claims on real resources from expansion of the sector, \(Nc \) (as \(N^{\frac{1}{\rho} - 1} > 1 \)).

The representative consumer’s budget constraint for \(M \):

\[\sum_{i=1}^{N} p_i c_i = \delta Y. \] \hspace{1cm} (2)

Demand for variety \(j \) by a representative consumer (maximise eq.(1) s.t. eq.(2), see Brakman et al., 2001, pp. 70f.):

\[c_j = p_j^{-\epsilon} (I^{\epsilon - 1} \delta Y), \]

where:

\[I \equiv \left(\sum_{i=1}^{N} p_i^{1-\epsilon} \right)^{\frac{1}{\epsilon}}; \quad M = \frac{\delta Y}{I}; \quad \epsilon = \frac{1}{1-\rho} > 1. \]

Real wage:

\[w = \frac{W}{I^\rho}, \]

where \(W \) is the “nominal” wage, in terms of \(F \).
3 Supply

Production function for \(F \):

\[F = (1 - \gamma)L. \]

Firms’ production function in the \(M \) sector:

\[L_{Mi} = \alpha + \beta x_i. \]

Firms’ profit function in the \(M \) sector:

\[\pi_i = p_i x_i - W(\alpha + \beta x_i). \]

Constant price-elasticity of demand \(\epsilon \) \(\implies \) mark-up pricing (MR=MC):

\[p \left(1 - \frac{1}{\epsilon} \right) = \beta W, \text{ or } p = \beta \frac{W}{\rho}. \]

Free entry \(\implies \) zero-profits \(\implies \)

- firm scale:
 \[x = \frac{\alpha (\epsilon - 1)}{\beta}, \]

- per-firm labour requirement:
 \[l = \alpha \epsilon, \]

- no. of varieties \(i \):
 \[N = \frac{\gamma L}{l} = \frac{\gamma L}{\alpha \epsilon}. \]
4 Equilibrium

Six equilibrium equations, six endogenous variables:

- Incomes:
 \[Y_1 = \lambda_1 W_1 \gamma L + \phi_1 (1 - \gamma)L \]
 \[Y_2 = \lambda_2 W_2 \gamma L + \phi_2 (1 - \gamma)L \]

- Price indices:
 \[I_1 = \beta \left(\frac{\gamma L}{\alpha \epsilon} \right) \frac{\lambda_1 W_1^{1-\epsilon} + \lambda_2 T^{1-\epsilon} W_2^{1-\epsilon}}{\alpha \epsilon} \]
 \[I_2 = \beta \left(\frac{\gamma L}{\alpha \epsilon} \right) \frac{\lambda_2 W_2^{1-\epsilon} + \lambda_1 T^{1-\epsilon} W_1^{1-\epsilon}}{\alpha \epsilon} \]

- Wages:
 \[W_1 = \rho \beta^{-\rho} \left(\frac{\delta}{(\epsilon - 1)\alpha} \right)^{\frac{1}{2}} (Y_1 I_1^{-1} + Y_2 T^{1-\epsilon} I_2^{-1})^{\frac{1}{2}} \]
 \[W_2 = \rho \beta^{-\rho} \left(\frac{\delta}{(\epsilon - 1)\alpha} \right)^{\frac{1}{2}} (Y_2 I_2^{-1} + Y_1 T^{1-\epsilon} I_1^{-1})^{\frac{1}{2}} \]

endogenous variables: \(Y_1, Y_2, I_1, I_2, W_1, W_2 \)
exogenous variables: \(L, \alpha, \beta, \gamma, \delta, \phi, \rho, \epsilon, T \)
short-run exogenous, long-run endogenous: \(\lambda_1, \lambda_2 \)

\[\rightarrow \text{highly non-linear system} \implies \text{use simulations} \]

Long-run equilibrium:
- \(w_1 = w_2 \) (“interior solution”, symmetric equilibrium if regions 1 and 2 are identical), or
- \(\lambda_1 = 1, w_1 \geq w_2 \) (full agglomeration in region 1, “core-periphery outcome”), or
- \(\lambda_2 = 1, w_1 \leq w_2 \) (full agglomeration in region 2, “core-periphery outcome”).

- Law of motion: \(\Delta \lambda_1 = -\Delta \lambda_2 = \eta \left(\frac{w_1}{w_2} \right) > 0 \), where \(\eta \) represents the “speed of adjustment”