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Abstract

School choice programs aim to give students the option to choose their school. At the

same time, underrepresented minority students should be favored to close the opportunity

gap. A common way to achieve this is to have a majority quota at each school, and to require

that no school be assigned more majority students than its majority quota. An alternative

way is to reserve some seats at each school for the minority students, and to require that a

reserve seat at a school be assigned to a majority student only if no minority student prefers

that school to her assignment. However, fair rules based on either type of affirmative action

suffer from a common problem: a stronger affirmative action may not benefit any minority

student and hurt some minority students. First, we show that this problem is pervasive: the

problem disappears only if the minority students “mostly” have priority over the majority

students. Then, we uncover the root of this problem: for some minority students, treating

them as minority students does not benefit them, but possibly hurts other minority students.

We propose a new assignment rule (Modified deferred acceptance with minority reserves),

which treats such minority students as majority students, achieves affirmative action, and

never hurts a minority student without benefiting another minority student.

JEL Classification Numbers: C78, D47, D71, D78

Keywords: School choice, affirmative action, minimal responsiveness

1 Introduction

Due to historical discrimination based on criteria such as color and ethnicity, some groups are not

represented in education as much as they are in the general population. The term “affirmative

action” refers to regulations that aim to remedy the situation by favoring the underrepresented

minority groups. Currently in many school districts, students are placed in public schools through
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public school choice programs that allow students to choose their schools instead of being assigned

to a school solely based on where they live, and many school districts have affirmative action

policies to favor minority students and help them attend more preferred schools.1

Since school capacities are limited and some schools may be over-demanded, schools are

given priority orderings over students.2 Given the preferences of the students and the priority

orderings, how to assign students to schools in a good way calls for the design of assignment

rules. Assignment rules without affirmative action policies have been extensively studied since the

pioneering work of Abdulkadiroğlu and Sönmez (2003).3 A central objective has been fairness:

there should be no student-school pair such that the student prefers the school to her assigned

school, and the school has a vacant seat or it is assigned another student who has lower priority

at that school. That is, no students’ priority at any school should be violated. Having no priority

violation is desirable also from the stability perspective. An unfair assignment is unstable in the

sense that there is a pair of agents who have the incentive to circumvent the assignment. There

is extensive empirical evidence that agents do indeed circumvent an unstable assignment and

the clearinghouses that use stable assignment rules have succeeded while the ones using unstable

assignment rules tend to fail (Kagel and Roth (2000); Roth (2002); Ünver (2000)).

For school districts without an affirmative action policy, the design program for fair assign-

ment rules has been successful (Abdulkadiroğlu (2013); Roth (2008)). However, the case with

affirmative action policies is controversial. To highlight a controversy, consider for instance the

most common affirmative action policy, the quota-type of affirmative action: at each school, there

is a quota for the majority students, and no school can be assigned more majority students than

its quota. This policy has two implications. First, it is a constraint and the fairness requirement

should be modified to be compatible with this constraint (in particular, some priority violations

will now be allowed since otherwise the quota requirement will be violated). Second, the purpose

of this policy is to favor the minority students and the assignment rule should be responsive to

that. A minimal requirement for an assignment rule to be responsive is the following: consider

any school choice problem with majority quotas; consider the assignment recommended by the

rule; consider another problem obtained by lowering the quotas at some schools; consider the

new assignment recommended by the rule; if a minority student is worse off, then at least one

other minority student should be better off. If a rule satisfies this property, then we say that

it is minimally responsive to affirmative action, or simply minimally responsive.4 Otherwise, we

1Some school districts in the US that have affirmative action policies are Boston (MA), Jefferson County (KY),
Kansas City (MO), Louisville (KY), Minneapolis (MN), and St. Louis (MO).

2In most of the school districts, priorities are determined by criteria such as whether the student lives in the
attendance area of that school and whether the student has a sibling attending that school.

3For a survey on school choice, see Abdulkadiroğlu (2013).
4Minimal responsiveness is introduced by Kojima (2012). Kojima (2012) calls it “respect for the spirit of

affirmative action”.

2



say that it is perversely responsive.

For any affirmative action policy, as long as a stronger affirmative action is well-defined,

minimal responsiveness is also well-defined and requires that a stronger affirmative action should

not hurt some minority students without benefiting another minority student. In fact, one may

argue that a rule should respond to a stronger affirmative action by favoring all the minority

students or at least a significant proportion of them. Yet, all that minimal responsiveness requires

is that a stronger affirmative action does not hurt all the minority students, hence the name

minimal responsiveness.

Kojima (2012) shows that under the quota-type affirmative action policy, there is no fair

assignment rule that is minimally responsive. The first contribution of our paper is to better

understand this impossibility, in particular whether it is due to some exceptional school choice

environments. We give a complete answer to this question by offering a characterization of the

priority structures for which the incompatibility disappears (Theorem 1).5 It turns out that such

priority structures are very restricted. Specifically, suppose that the number of minority students

is greater than the capacity of each school, which is very likely to be met in practice. Then,

there is a fair and minimally responsive rule that achieves the quota-type affirmative action if

and only if each majority student has lower priority than each minority student at each school

(Corollary 1).

Recently, Hafalir et al. (2013) proposed another type of affirmative action, in which each

school reserves a certain number of seats for the minority students, although majority students

can also be assigned to those seats provided that no minority student prefers that school to her

assigned school. We call this the reserve-type affirmative action. Hafalir et al. (2013) also pro-

pose a fair assignment rule, “deferred acceptance with minority reserves” (DAm), that achieves

the reserve-type affirmative action and brings considerable efficiency gains over fair rules that

achieve the quota-type affirmative action. Yet, DAm is not minimally responsive. Our second

contribution is twofold: First, we show that no fair and minimally responsive assignment rule

achieves the reserve-type affirmative action; second, we show the scope of the impossibility (The-

orem 2). Interestingly, it is almost the same as the scope of the impossibility for the quota-type

affirmative action. Specifically, suppose that the number of minority students is greater than the

total capacity of any two schools, which is also very likely to be met in practice. Then, there is

a fair and minimally responsive rule that achieves the reserve-type affirmative action if and only

if each majority student has lower priority than each minority student (except for at most one

minority student) at each school (except for at most one school) (Proposition 2).

Hafalir et al. (2013), after noting that DAm is not minimally responsive, propose the fol-

5The priority structures for which the incompatibility of fairness and Pareto efficiency disappears have been
characterized before (Ergin (2002) and Ehlers and Erdil (2010)).
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lowing solution. They show that if the minority reserves are chosen “carefully”, which they refer

to as smart reserves, then DAm is minimally responsive. However, to design smart reserves, one

needs to know the number of minority students that would be assigned to each school at a fair

assignment when there is no affirmative action, which obviously requires preference information

(Hafalir et al. (2013)). They propose to use the past data to figure out what the assignment would

be without affirmative action, which does not necessarily guarantee minimal responsiveness.

Instead of checking what happens to the minority students when we move from a weaker

affirmative action to a stronger affirmative action, we could have focused on what happens when

we move from no affirmative action to affirmative action. This would give us a requirement weaker

then minimal responsiveness. In all the proofs of the results relating to the impossibilities with

the current policies, we start with a no affirmative action problem and show that when we move

to (a stronger) affirmative action, minimal responsiveness has to be violated (This is the case

also for the proofs in Kojima (2012)). Thus, the rules based on the current affirmative action

policies do not even satisfy this weaker requirement.

All these disappointing news about the two types of affirmative action expose the need for

an affirmative action rule that is minimally responsive. Our third contribution is to propose a fair

and minimally responsive rule that achieves a certain type of affirmative action. Our proposal

is a modification of DAm. We call it “modified deferred acceptance with minority reserves” and

denote it by MDAm. Our modification is based on the following observation about why DAm is

perversely responsive: in the DAm algorithm, a minority student who has a lower priority than a

majority student at a school, is temporarily accepted by that school while the majority student is

rejected; however, the majority student being rejected initiates a sequence of rejections that may

end with the minority student being rejected by the same school; in a sense, the minority student

“interferes” with the admission process of the school without getting anything out of it. The key

idea behind MDAm is to first detect these interferers and treat them as majority students at

the schools at which they interfere. The way MDAm is defined departing from DAm is inspired

by the way EADAM in Kesten (2010) is defined departing from the deferred acceptance rule.

MDAm is minimally responsive but DAm is not. Moreover, we show that when DAm is

used and we switch to a stronger affirmative action, if no minority student benefits, then also

no majority student benefits (Proposition 3). That is, whenever DAm perversely responses to

affirmative action, there is an efficiency loss in the Pareto sense. Moreover, we show that when

DAm is used, the “efficiency loss” due to a stronger affirmative action may be severe (Proposition

4). Hafalir et al. (2013), through simulations, show that affirmative action under DAm brings

considerable welfare gains to the minority students on average. We show that at each problem,

MDAm either Pareto dominates DAm or gives the same assignment (Theorem 4), implying that

all the welfare gains for the minority students are preserved.
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MDAm achieves a type of affirmative action where the only difference from the reserve-

type affirmative action is that a minority student may be excluded from a school although the

reserve is not exhausted, provided that there is no fair assignment at which at least one minority

student is better off and no minority student is worse off. We call this “conditional-reserve–type

affirmative action”. We show that MDAm is not Pareto dominated (either for the minority or

for all the agents) by any fair rule that achieves this type of affirmative action (Theorem 3).

One important deficiency of MDAm is that it is not strategy-proof, although DAm is. Yet,

we show that no fair rule is minimally responsive, strategy-proof, and achieves any type of affir-

mative action we have mentioned (Theorem 5). Moreoever, we propose the notion of minimal

fairness, which is a requirement that, we argue, should be satisfied by a fair rule achieving a min-

imum level of affirmative action. We show that no rule is minimally fair, minimally responsive,

and strategy-proof (Theorem 6). This result suggests that the previous impossibilities are not

due to the particular choice of affirmative action policies but rather to a general incompatibility

of minimal responsiveness and strategy-proofness under affirmative action.

2 Related literature

The literature on school choice with affirmative action has so far been silent on minimal respon-

siveness except for Kojima (2012). To our knowledge, our paper is the first to propose a fair and

minimally responsive affirmative action rule. However, several theoretical studies have proposed

assignment rules intended for affirmative action with desirable fairness and strategic properties.

Abdulkadiroğlu and Sönmez (2003) introduce a version of the deferred acceptance algorithm to

the affirmative action setting and discuss such properties. Ehlers et al. (2014) study quota type

affirmative action policies by incorporating both upper and lower type-specific bounds, and also

allowing for more than two types of students. A part of the literature, including Echenique

and Yenmez (2014), Kominers and Sönmez (2013), Westkamp (2013), and Erdil and Kumano

(2012), approaches the affirmative action problem from the perspective of designing priorities

or choice functions for the schools. In particular, another type of affirmative action that is not

analyzed in this paper, is implemented by raising the priorities of the minority students relative

to the majority students, while maintaining the priority orderings within each type. In this case,

a stronger affirmative action means that for each minority student and for each school, each

student who used to have a lower priority than her at that school still has a lower priority, and

possibly a student who did not have a lower priority now has a lower priority. This type of

affirmative action is also known to suffer from the same problem: fairness is not compatible with

minimal responsiveness (Kojima (2012)). On the experimental side, Klijn et al. (2014) provide

comparative analysis of quota-type and reserve-type affirmative action policies, the main focus
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being on the strategic behavior of students.

As we have noted before, the way MDAm is defined is very similar to the way EADAM

in Kesten (2010) is defined. The deferred acceptance rule, in case of no affirmative action,

is not Pareto efficient and EADAM is proposed to remove its inefficiency by identifying the

students that cause the inefficiency and treating them differently. On the other hand, DAm is

not minimally responsive and we propose MDAm to remove this deficiency by identifying the

students that cause it and treating them differently. Yet, there are several important differences.

The setup in which EADAM is defined does not incorporate different types of students and

affirmative action. An interferer in that setup is treated by removing from her preference ordering

the school at which she interferes. By contrast in our setup, an interferer, who is necessarily a

minority student, is treated as a majority student at the school she interferes. Although minimal

responsiveness is not completely symmetric to Pareto efficiency in that setup, and the way we

treat the interferers is also not completely symmetric, most of the results in Kesten (2010) have

counterparts in our setup.

3 School choice problems with affirmative action

Let S be a finite set of students. There are two types of students, minority students and majority

students. Let Sm and SM denote the sets of minority and majority students, respectively. They

are nonempty sets such that Sm ∪ SM = S and Sm ∩ SM = ∅. Let C be a finite set of schools.

Suppose that |S|, |C| ≥ 2. For each s ∈ S, student s has a strict (i.e. complete, transitive,

and anti-symmetric) preference relation Rs over C ∪ {s}, where s denotes her outside option,

which can be attending a private school or homeschooling. Let R be the set of all such preference

relations. Let Ps be the strict relation associated with Rs. LetR ≡ (Rs)s∈S ∈ RS be a preference

profile.

Each school c ∈ C has a strict priority relation �c over S. Let �c be the strict relation

associated with �c. Let �≡ (�c)c∈C be the priority profile.

School c can admit up to a certain number of students, its capacity. Let qc ∈ N be the

capacity of school c. Let q ≡ (qc)c∈C ∈ NC be the capacity profile.

For each school, there is an affirmative action parameter, denoted by rc, such that rc ∈ N
and rc ≤ qc. We incorporate the parameter to analyze affirmative action policies in a unified

framework. The use of r will be clarified shortly when we discuss different types of affirmative

action. Yet, to have an idea, rc is the number of seats at c at which the minority students are

favored.

In short, a school choice problem with affirmative action, or simply a problem, is a list

(Sm, SM , C,R,�, q, r) such that r ≤ q. Since (Sm, SM , C,�, q) will be fixed, unless otherwise
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noted, a problem is simply a pair (R, r).

A matching is an assignment of students to schools such that each student is assigned to a

school or to her outside option, and no more students are assigned to a school than its capacity.

Formally, a matching µ is a mapping from S ∪ C to the subsets of S ∪ C such that

i. for each s ∈ S, µ(s) ∈ C ∪ {s},
ii. for each c ∈ C, µ(c) ⊆ S and |µ(c)| ≤ qc, and

iii. for each s ∈ S and c ∈ C, µ(s) = c if and only if s ∈ µ(c).

For each matching µ and school c, let µm(c) and µM(c) denote the sets of minority

and majority students assigned to c at µ.

An affirmative action rule, or simply a rule, chooses a matching for each problem.

Let µ and µ′ be matchings. Let R ∈ RS . The matching µ Pareto dominates µ′ at R

if for each s ∈ S, µ(s) Rs µ
′(s), strict preference holding for at least one s ∈ S. A matching

is Pareto efficient if it is not Pareto dominated by any other matching. Due to affirmative

action concerns, we are also interested in comparing two matchings with respect to the minority

students’ welfare. The matching µ Pareto dominates µ′ for the minority at R if for each

m ∈ Sm, µ(m) Rm µ′(m), strict preference holding for at least one s ∈ Sm.

A central objective in design for school choice is fairness. When there is no affirmative

action, that is when the student types and the affirmative action parameter are ignored, fairness

corresponds to the following. Given a problem R, a matching µ, and a student-school pair (s, c),

the priority of s is violated at c if s prefers c to µ(s) and a student s′ with a lower priority

is assigned to c at µ. We also say that the priority of s is violated by s′ at c. A matching µ is

fair if the following conditions are satisfied.6

1. No priority violation: No students’ priority at any school is violated.

2. Outside option lower bound: No student prefers her outside option to her assignment.

3. Non-wastefulness: If a student prefers a school c to her assignment, then the capacity of c

is exhausted, i.e. |µ(c)| = qc.

A rule is fair if it chooses a fair matching at each problem.

We now introduce two types of affirmative action policies. The first policy, which is very

common in practice and known as quota-type affirmative action policy, considers, for each school

c, the parameter rc as the number of seats at school c that can be assigned only to the minority

students. The second policy, which we call reserve-type affirmative action policy, considers the

affirmative action parameter at each school as the number of seats that are reserved for the

minority students, but can be assigned to majority students provided that no minority student

6In the matching literature, an (s, c) pair such that the priority of s is violated at c is usually called a blocking
pair, and a fair matching is also called stable.
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prefers that school to her assigned school.7 When there is an affirmative action policy, an

objective is to achieve affirmative action in a fair way. Note that each affirmative action policy

imposes constraints and hence the fairness requirement for the no affirmative action case should

be modified accordingly. Next, we introduce two fairness requirements, namely fairness with

quota and fairness with reserve, that formalize the modifications.

3.1 Fairness with quota

In the quota-type affirmative action policy, for each school c, the parameter rc represents the

number of seats at school c that can be assigned only to the minority students. In other words,

c is allowed to admit only up to qc − rc majority students; the difference qc − rc is called its

majority-quota.

Let (R, r) be a problem. A matching µ is fair with respect to quota-type affirmative action,

or simply fair with quota , if the following conditions are satisfied.8

1. No school admits more majority students than its majority-quota.

2. If there are s, s′ ∈ S and c ∈ C such that the priority of s is violated by s′ at c, then

s ∈ SM , s′ ∈ Sm, and the majority quota of c is met at µ, i.e. |µM (c)| = qc − rc.
3. No student prefers her outside option to her assignment.

4. If a student prefers a school c to her assignment, then either s ∈ Sm and |µ(c)| = qc or

s ∈ SM and |µM (c)| = qc − rc.
A rule is fair with quota if it chooses, at each problem, a matching that is fair with

quota. Note that if a rule is fair with quota, then it achieves the quota-type affirmative action

in a fair way.

3.2 Fairness with reserve

The reserve-type affirmative action policy considers the affirmative action parameter at each

school as the number of seats that are reserved for the minority students. Here, a school is

allowed to assign some of its reserved seats to majority students provided that no minority

student prefers that school to her assigned school.

Let (R, r) be a problem. A matching µ is fair with respect to the reserve-type affirmative

action, or simply fair with reserve if the following conditions are satisfied.9

7Hafalir et al. (2013) introduces an assignment rule that achieves reserve-type affirmative action.
8In Kojima (2012), quota requirement and modified fairness requirement are considered separately and he refers

to fairness as stability. A rule being fair with quota in our setup is technically equivalent to saying that a rule is
stable in Kojima (2012) setup under quota-type affirmative action.

9Fairness with reserve is equivalent to the stability requirement in Hafalir et al. (2013).
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1. If there are s, s′ ∈ S and c ∈ C such that the priority of s is violated by s′ at c, then

s ∈ SM , s′ ∈ Sm, and the minority reserve at c is unexceeded at µ, i.e. |µm(c)| ≤ rc.
2. There are no m ∈ Sm and c ∈ C such that m prefers c to µ(m) and the minority reserve

at c is not exhausted, i.e. |µm(c)| < rc.

3. No student prefers her outside option to her assignment.

4. If a student prefers a school c to her assignment, then the capacity of c is exhausted, i.e.

|µ(c)| = qc.

A rule is fair with reserve if it chooses, at each problem, a matching that is fair with

reserve. Note that if a rule is fair with reserve, then it achieves the reserve-type affirmative

action in a fair way.

4 Impossibilities with quota or reserve

The following requirement is essential for a rule that is operating in line with the intention

of affirmative action: consider any school choice problem with affirmative action; consider the

assignment recommended by the rule; consider another problem obtained by weakly increasing

the affirmative action parameter at each school; consider the new assignment recommended by

the rule; if a minority student is worse off, then at least one other minority student should

be better off. If a rule satisfies this requirement, then we say that it is minimally responsive to

affirmative action, or simply minimally responsive. Formally, a rule ϕ is minimally responsive

if there are no R ∈ RS , and r, r′ ∈ N such that r′ ≥ r and ϕ(R, r) Pareto dominates ϕ(R, r′) for

the minority at R. It is perversely responsive if it is not minimally responsive.

It turns out that no rule is fair with quota and minimally responsive (Kojima (2012)). Of

course, this impossibility result is on the full domain of school choice problems. On the other

hand, there are restricted domains of problems where we have possibility. For instance, on a

domain of problems such that for each problem Sm = ∅, then any rule that is fair with quota is

also trivially minimally responsive. Note that the policy makers in school districts can observe

Sm, SM , C, �, and q, although they can not observe the preferences of the students. Then, a

natural question is the following: for which (Sm, SM , C,�, q) lists is there a rule that is fair with

quota and minimally responsive? Providing an answer to this question serves two purposes:

1. Understanding the degree and the structure of incompatibility: if such lists are “common”

among all possible lists, the incompatibility is arguably not severe, and that can justify

using a rule which is fair with quota. Also, understanding the structure of such lists may

yield new types of affirmative action that do not suffer from the problem;

2. Policy recommendation: the central authority does not know the preferences of the stu-

dents. However, it has the information and also, to some extent, control over:
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(a) which student is of which type: in some universities, the academic achievements of

a student are examined in light of income, and “income level thresholds” can be

controlled;

(b) the priority profile: in some states, the school priorities depend on the “attendance

area” of the schools, which can be controlled;

(c) capacity profile: the capacity of a school usually does not represent the exact number

of students that it can accommodate, so that can be controlled too.

Based on the answer to the aforementioned question, we may recommend ways to control such

parameters in a way that permits us to define rules that are fair and minimally responsive.

The following notion is essential for the answer. For each s ∈ S, each c ∈ C, and each

priority ordering �c, let U�c (s) ≡ {s′ ∈ S : s′ �c s} denote the set of students consisting of

s and all students with higher priority. A list (Sm, SM , C,�, q) gives full priority to the

minority if there are no m ∈ Sm,M ∈ SM , and c ∈ C such that [M �c m and |U�c (m)| ≥ qc+1].

Observe that if (Sm, SM , C,�, q) gives full priority to the minority, then at each school c, either

each minority student is ranked above each majority student, or each minority student is one of

the qc highest-priority students.

Lemma 1. Suppose that (Sm, SM , C,�, q) gives full priority to the minority. Let R ∈ RS and

r, r′ ≤ q. For each matching µ which is fair with quota at (R, r), there is a matching µ′ which

is fair with quota at (R, r′) such that each minority student is assigned to the same school at µ

and µ′.

Proof. See Appendix 8.1.

The following theorem states that the existence of a rule that is fair with quota and mini-

mally responsive requires that (Sm, SM , C,�, q) give full priority to the minority.

Theorem 1. There is a rule that is fair with quota and minimally responsive if and only if

(Sm, SM , C,�, q) gives full priority to the minority.

Proof. See Appendix 8.2.

Corollary 1, which directly follows from Theorem 1, shows that with a mild assumption,

the impossibility disappears only when the minority students already have priority over majority

students.

Corollary 1. Suppose that the number of minority students is greater than the capacity of each

school. Then, there is a rule which is fair with quota and minimally responsive if and only if

each minority student has priority over each majority student at each school.
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It turns out that also no rule is fair with reserve and minimal responsiveness.

Proposition 1. No rule is fair with reserve and minimally responsive.

Proof. See Appendix 8.3.

Next, we characterize the lists (Sm, SM , C,�, q) for which fairness with reserve is com-

patible with minimal responsiveness. The following notions are essential for this purpose. Let

s1, s2 ∈ S, c ∈ C, N ⊆ S. The pair (s1, N) is a threat for s2 at c and (q,�) if |N | = qc − 1

and

either: s2 ∈ Sm, s1 �c s2, and N ⊆ U�c (s2) \ {s1, s2}.
or: s2 ∈ SM , N ∩ SM ⊆ U�c (s2) \ {s1, s2}, and if s1 ∈ SM then s1 �c s2.

The intuition is that, if (s1, N) is a threat for s2 at c and (q,�), then there is (R, r) such

that the students s2, s1, and N compete for a seat at c and s2 does not get a seat at c. Let

T (s, c) denote the set of threats for s at c and (q,�).

A list (Sm, SM , C,�, q) has a cycle if there is a pair of minority students m,m′ ∈ Sm,

a majority student M ∈ SM , a list of students s1, . . . , sk−2 ∈ S, a list of schools c1, . . . , ck ∈ C,

and a list of disjoint sets of students N1, . . . , Nk ⊆ S such that

1) m �c1 m
′, M �c1 m

′, M �c2 s1, m /∈ N1, and

2) (m′, N1) ∈ T (M, c1), (M,N2) ∈ T (s1, c2), (sk, Nk) ∈ T (m, ck), (m,N1) ∈ T (m′, c1), and

for each t ∈ {3, . . . , k − 1}, (st−2, Nt) ∈ T (st−1, ct).

A list (m,m′,M, s1, . . . , sk−2, c1, . . . , ck, N1, . . . , Nk) satisfying 1 and 2 is a cycle of length

k. A list (Sm, SM , C,�, q) is acyclic if it has no cycle.

Theorem 2. There is a rule that is fair with reserve and minimally responsive if and only if

(Sm, SM , C,�, q) is acyclic.

Proof. See Appendix 8.6.

Proposition 2 shows how restrictive acyclicity is.

Proposition 2. Suppose that the number of minority students is greater than the total capacity

of the two smallest schools, i.e. for each pair c, c′ ∈ C, |Sm| > qc + qc′. Let M ∈ SM . If

(Sm, SM , C,�, q) is acyclic, then there are at least |Sm| − 1 minority students each of whom has

higher priority than M at at least |C| − 1 schools.

Proof. See Appendix 8.7.

In practice, it is very unlikely that the minority students mostly have priority over the

majority students. Therefore, the incompatibilities are not exceptional, but pervasive. The

above results also reveal two striking facts:
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1. The school choice environments in which the incompatibility disappears are almost the

same for the two types of affirmative action.

2. The environments at which the minority students mostly have priority over the majority

students are the environments at which we don’t really need affirmative action, since any

reasonable assignment rule respecting the priorities will favor them. Therefore, for either

type of affirmative action, the only situations at which the incompatibility disappears, are

the ones at which we don’t need affirmative action.

In what follows, we will look for a rule that is minimally responsive. Our departure point is a

prominent rule that is fair with reserve, namely the deferred acceptance rule with minority

reserves, DAm, (Hafalir et al. (2013)). It is defined through the following algorithm.

DAm algorithm runs as follows. Let (R, r) be given.

Step 1. Each student s applies to her top-ranked school. Each student applying to her

outside options is assigned to her outside option. Each school c considers its applicants. Among

these, it tentatively accepts up to rc minority students, those with the highest �c-priorities.

Then, among the remaining applicants it tentatively accepts those with the highest �c-priorities

until its capacity is filled or it runs out of applicants. It rejects all other applicants. If there is

no rejection by any school at this step, then stop.

Step k ≥ 2. Each student s who is rejected at Step k− 1 applies to her top-ranked school

from among the ones that have not rejected her, possibly her outside option s. Each student

applying to her outside options is assigned to her outside option. Each school c considers the

students it tentatively accepted at Step k − 1 and its new applicants at Step k. Among these,

it tentatively accepts up to rc minority students, those with the highest �c-priorities. Then, it

tentatively accepts applicants with the highest �c-priorities until its capacity is filled or it runs

out of applicants. It rejects all other applicants. If there is no rejection by any school at this

step, then stop.

The algorithm stops in finite time. For each problem (R, r), the outcome of the above

algorithm is the outcome chosen by DAm. We denote it by DAm(R, r).

Hafalir et al. (2013) considers a weakening of minimal responsiveness which requires that not

all the minority students are worse off when the minority reserve at each school weakly increases.

DAm satisfies this requirement (Hafalir et al. (2013)). However, by Proposition 1, it may be that

when the minority reserve at each school weakly increases, then DAm chooses a matching that

is Pareto inferior for the minority. In other words, under a stronger affirmative action, DAm

may hurt some minority students without benefiting any minority student. Proposition 3 shows

that the perverse effects of a stronger affirmative action are even more severe: when DAm is

used, whenever no minority student benefits from a stronger affirmative action, also no majority

student does.
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Proposition 3. Let R ∈ RS and r, r′ ∈ NC. If r ≤ r′ and DAm(R, r) Pareto dominates

DAm(R, r′) at R for the minority, then DAm(R, r) Pareto dominates DAm(R, r′) at R.

Proof. See Appendix 8.4.

The following example shows that not only might a stronger affirmative action result in a

Pareto inferior matching, but the associated efficiency loss might be severe.

Example 1. Let Sm ≡ {m1,m2, . . . ,m7}, SM ≡ {M1,M2, . . . ,M8}, C ≡ {c1, c2, . . . , c8}. Let

(qc1 , . . . , qc8) ≡ (2, 4, 2, 2, 2, 2, 1, 1), (rc1 , . . . , rc8) ≡ (0, 0, . . . , 0), and (r′c1 , . . . , r
′
c8) ≡ (0, 2, 0, . . . , 0).

Let � and R be as depicted below. Each student prefers each school to her outside option. We

only depict the preferences over schools.

�c1 �c2 �c3 �c4 �c5 �c6 �c7 �c8

M1 M8 M1 M3 M5 M6 M7 m5

M2 M1 M2 M4 m3 m4 m7 m6

M3 m6 M3 M5 M6 M7 m5 m7

m1 M2 M4 m3 m4 m7 M1 M1

M4 m7 M5 M1 M1 M1 M2 M2

M5 m1 M6 M2 M2 M2 M3 M3

M6 m2 M7 M6 M3 M3 M4 M4

m2 M3 M8 M7 M4 M4 M5 M5

M7 M4 m1 M8 M7 M5 M6 M6

M8 M5 m2 m1 M8 m1 m1 M7

m3 M6 m3 m2 m1 m2 m2 M8

m4 M7 m4 m4 m2 m3 m3 m1

m5 m3 m5 m5 m5 m5 m4 m2

m6 m4 m6 m6 m6 m6 m4 m3

m7 m5 m7 m7 m7 M8 M8 m4

Rm1 Rm2 Rm3 Rm4 Rm5 Rm6 Rm7 RM1 RM2 RM3 RM4 RM5 RM6 RM7 RM8

c2 c2 c4 c5 c7 c8 c6 c2 c2 c3 c3 c4 c5 c6 c7
c3 c3 c6 c7 c2 c3 c3 c4 c4 c5 c5 c6 c7 c8 c8
c4 c4 c7 c8 c3 c4 c4 c5 c5 c6 c6 c7 c8 c2 c6
c5 c5 c8 c2 c4 c5 c5 c6 c6 c7 c7 c8 c2 c3 c3
c6 c6 c2 c3 c5 c6 c8 c7 c7 c8 c8 c2 c3 c4 c4
c7 c7 c3 c4 c6 c7 c7 c8 c8 c2 c2 c3 c4 c5 c5
c8 c8 c5 c6 c8 c2 c2 c3 c3 c4 c4 c5 c6 c7 c2

c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1 c1

DAm(R, r) and DAm(R, r′) are represented by the underlined and boxed matchings, respec-

tively. At DAm(R, r), m1 and m2 are assigned to their least-preferred schools, M8 is assigned to
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her second least-preferred school, and all the other students are assigned to their most-preferred

schools. At DAm(R, r′), m1 and m2 are still assigned to their least-preferred schools, M8 is still

assigned to her second least-preferred school. However, all the other students are assigned to

their second least–preferred schools.

Proposition 4 shows that for an arbitrary set of schools and an arbitrary capacity profile,

there are school choice problems where the efficiency loss due to a stronger affirmative action

under DAm is severe. Moreover, the number of minority students who are hurt may be high.

Proposition 4. Let C = {c1, . . . , cK} be a set of schools and q be a capacity profile. Let K ≥ 3

and q1 ≥ q2 ≥ · · · ≥ qK . Let k ∈ N be such that q3 ≤ k ≤ q3 + q4 + · · · + qK . There is a set of

minority students Sm, a set of majority students SM , a preference profile R, a priority profile

�, and a pair of minority reserve profiles r ≤ r′ ≤ q, with the following properties.

(1) Each student prefers each school to her outside option. Each student is assigned to a

school at both DAm(R, r) and DAm(R, r′).

(2) There are k minority students and (2qc3 + qc4 + · · · + qcK ) − k majority students who

are assigned to their most-preferred schools at DAm(R, r) and second least-preferred schools at

DAm(R, r′). All the remaining students are assigned to the same school in both matchings.

Proof. See Appendix 8.5.

5 A minimally responsive affirmative action rule

Theorem 2 provide insights into why no rule is fair with reserve and minimally responsive, and

in particular why DAm is perversely responsive: a minority student who has a lower priority

than a majority student at a school, is temporarily accepted by that school while the majority

student is rejected. However, the majority student being rejected initiates a sequence of further

rejections that may end with the minority student being rejected by the same school. In a sense,

a minority student “interferes” with the admission process of a school. In the light of these

observations, one would think that “not favoring” a minority student at a school at which she

is an interferer may remove some of the deficiencies of DAm. In what follows, we implement

this idea. We propose a modification of DAm such that some minority students are treated as

majority students at the schools they interfere.

Let m ∈ Sm, c ∈ C. Let (R, r) be a problem. The minority student m is an interferer

for c at (R, r)10 if there is a majority student M ∈ SM with M �c m and a pair of steps t, t′

10The notion of an “interferer” is very similar to the notion of an “interrupter” due to Kesten (2010). In Kesten
(2010), an interrupter is a student who initiates a rejection cycle and possibly causes the Deferred acceptance rule
to be inefficient.
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of the DAm(R, r) algorithm such that at Step t, m is tentatively accepted and M is rejected by

c, and at Step t′, m is rejected by c. We call (m, c) an interfering pair of Step t′ at (R, r).

Let IP (R, r) denote the set of interfering pairs at (R, r). Given k ∈ N, let IPk(R, r)

denote the set of interfering pairs of Step k at (R, r).

We modify the DAm algorithm in the following way. Let k be the last step in DAm(R, r)

algorithm at which there is an interfering pair. We run DAm algorithm such that for each

(m, c) ∈ IP (R, r) which is interfering at Step k, the interfering minority m is treated as a

majority student at school c. Then, we determine the last step at which there is an interferer in

this new algorithm, and treating those minorities as majorities at the schools they interfere we

run DAm algorithm again. We repeat this procedure until there is no new interfering pair.11

Before we provide the formal description of our algorithm, we introduce it by means of an

example. Let (S,C,�, q, R, r) be the problem defined as follows. Let Sm ≡ {m1,m2,m3,m4},
SM ≡ {M1,M2,M3}, C ≡ {c1, c2, c3, c4, c5, c6}. Let (qc1 , qc2 , qc3 , qc4 , qc5 , qc6 , qc7 , qc8) = (1, 1, 1,

2, 1, 1, 1, 2) and r = (1, 0, 1, 0, 1, 0, 1, 0). Let � and R be as depicted as follows. Only the top

parts of the profiles that are relevant to the example are depicted.

�c1 �c2 �c3 �c4 �c5 �c6 �c7 �c8

M1 M1 M2 M2 M3 M3 M4 M4

m3 m2 m2 m1 m5 m5 m6 m4

m1 m3 m4

Rm1 Rm2 Rm3 Rm4 Rm5 Rm6 RM1 RM2 RM3 RM4

c1 c2 c3 c5 c6 c7 c1 c3 c5 c7
c4 c3 c1 c8 c5 c6 c2 c4 c6 c8

The DAm(R, r) algorithm is depicted below.

Step c1 c2 c3 c4 c5 c6 c7 c8
1 m1 ,M1 m2 m3 , M2 m4 , M3 m5 m6 ,M4

2 M1 ,m2 M2 M3 ,m5 M4

3 m2 ,m3 m5 ,m4

4 m3 ,m1 m4 , M4

5 m1 , M2

There are three interfering pairs at (R, r): (m3, c3) and (m4, c5) are interfering pairs at Step

3, and (m1, c1) is an interfering pair of Step 4. So, the last step of the DAm(R, r) algorithm at

11Detecting only the last step interferers is crucial. In Section 8.12, we show that two other natural ways of
removing the interferers do not work.
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which there is an interfering pair is Step 4, with (m1, c1) as the interfering pair . We then rerun

the DAm algorithm by treating m1 as a majority student at c1.

Step c1 c2 c3 c4 c5 c6 c7 c8
1 m1, M1 m2 m3 , M2 m4 , M3 m5 m6 ,M4

2 m1 , M2 M3 ,m5 M4

3 m5 ,m4

4 m4 , M4

Now, there is only one interfering pair: (m4, c5) is the interfering pair of Step 3. So, we run

DAm algorithm by treating m4 as a majority student at c5, and still treating m1 as a majority

student at c1.

Step c1 c2 c3 c4 c5 c6 c7 c8
1 m1, M1 m2 m3 , M2 m4, M3 m5 m6 ,M4

2 m1 , M2 m4 , M4

Now, there is no more interfering pair. Therefore, we stop, and the final outcome is the

matching chosen by our modified DAm.

Before we introduce the formal description of this modified DAm, we define a few auxiliary

notions. An affirmative action problem with school specific criteria is a triple (fm, R, r)

such that R ∈ RS , r ≤ q, and fm : C → S is a correspondence that associates a (possibly

empty) set of students with each school. For each c ∈ C, fm(c) indicates the set of minority

students at c. Note that unlike an affirmative action problem, the students who are considered

as minority students at two different schools may differ. Given such a problem (fm, R, r), let the

DAm(fm, R, r) algorithm be defined as follows.

Step 1. Each student s applies to her top-ranked school. Each student applying to her

outside options is assigned to her outside option. Each school c considers its applicants. It

tentatively accepts up to qmc students from among the fm(c) applicants with the highest �c-

priorities. Then, among its remaining applicants it tentatively accepts those with the highest

�c-priorities until its capacity is filled or it runs out of applicants. It rejects the others. If there

is no rejection by any school at this step, then stop.

Step k ≥ 2. Each student s who is rejected at Step k− 1 applies to her top-ranked school

from among the ones that have not rejected her. Each student applying to her outside options

is assigned to her outside option. Each school c considers the tentatively accepted students at

Step k − 1 and its new applicants at Step k. Each scool c first tentatively accepts up to qmc
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students from among the fm(c) applicants with the highest �c-priorities. Then, it tentatively

accepts applicants with the highest �c-priorities until its capacity is filled or the applicants are

exhausted. Those who are not tentatively accepted are rejected. If there is no rejection by any

school at this step, then stop.

The above algorithm stops in finite time. Let DAm(fm, R, r) be the outcome of the

DAm(fm, R, r) algorithm.

Student s is an interferer for c at (fm, R, r) if s ∈ fm(c), there is a majority student,

say M ∈ SM , with M �c s, and there are two steps of the DAm(fm, r, r) algorithm, say t and t′,

such that at Step t, s is tentatively accepted and M is rejected by c, and at Step t′, s is rejected

by c. We call (s, c) an interfering pair of Step t′ at (fm, R, r). Let IP (fm, R, r) denote the

set of interfering pairs at (fm, R, r). Given k ∈ N, let IPk(fm, R, r) denote the set of

interfering pairs of Step k at (fm, R, r).

Modified Deferred Acceptance with Minority Reserves, MDAm. For each prob-

lem (R, r), MDAm(R, r) algorithm runs as follows.

Round 0 Set for each c ∈ C, fm1 (c) = Sm.

Round 1. Run DAm(fm1 , R, r). If there is no interfering pair, i.e. if IP (fm1 , R, r) = ∅, then

stop. Otherwise, let k be the last step at which there is an interfering pair, i.e. IPk(fm1 , R, r) 6= ∅.
For each c ∈ C, let T (c, k) denote the set of students who are interfering at school c at Step

k, i.e. T (c, k) = {m ∈ Sm : (m, c) ∈ IPk(fm1 , R, r)}. For each c ∈ C, change the status of the

students in T (c, k) to majority students, i.e. set fm2 (c) = fm1 (c) \ T (c, k), and move to round 2.
...

Round t. Run DAm(fmt , R, r). If there is no interfering pair, i.e. if IP (fmt , R, r) = ∅, then

stop. Otherwise, let k be the last step at which there is an interfering pair, i.e. IPk(fmt , R, r) 6= ∅.
For each c ∈ C, let T (c, k) denote the set of students who are interfering at school c at Step

k, i.e. T (c, k) = {m ∈ Sm : (m, c) ∈ IPk(fmt , R, r)}. For each c ∈ C, change the status of the

students in T (c, k) to majority students, i.e. set fmt (c) = fmt−1(c)\T (c, k) and move to Step t+1.

Note that whenever the algorithm moves to a next round, say from round t to round t+ 1,

for at least one school, say c, we have |fmt+1(c)| < |fmt (c)|. Since we have finitely many students

and schools, eventually at a round T we will have for each c ∈ C, fmT (c) = ∅ unless the algorithm

terminates at an earlier round. But then at Round T there can not be any interfering pairs.

Thus the algorithm stops in finitely many rounds.

The MDAm, in a fair way, achieves the following type of affirmative action. This type

of affirmative action, which we call conditional reserve-type affirmative action, considers the

affirmative action parameter at each school as the number of seats that are reserved for the

minority students. Here, a school is allowed to assign some of its reserved seats to majority

students if no minority student prefers that school to her assigned school or there is no assignment
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that is fair with reserve at which at least one minority student is better off and no minority

student is worse off.12 So, the only difference from the reserve-type affirmative action is that a

minority student may be excluded from a school although the reserve is not exhausted, provided

that there is no assignment that is fair with reserve and Pareto dominates the former assignment

for the minority.

A matching µ is fair with respect to the conditional-reserve–type affirmative action, or

simply fair with conditional reserve , if the following conditions are satisfied.13

1. If there are m ∈ Sm and M ∈ SM such that m prefers c to µ(m), M has a higher priority

at c, and the minority reserve at c is not exhausted, i.e. |µm(c)| < rc, then there is no

matching that is fair with reserve and Pareto dominates µ for the minority.

2. if there are s, s′ ∈ S and c ∈ C such that the priority of s is violated by s′ at c, then

s ∈ SM , s′ ∈ Sm, and the minority reserve at c is not exceeded at µ, i.e. |µm(c)| ≤ rc.
3. No student prefers her outside option to her assignment.

4. If a student prefers a school c to her assignment, then the capacity of c is exhausted, i.e.

|µ(c)| = qc.

A rule is fair with conditional reserve if it chooses, at each problem, a matching that is

fair with conditional reserve. Note that if a rule is fair with conditional reserve, then it achieves

the conditional-reserve–type affirmative action in a fair way. Theorem 3 shows that MDAm is

fair with conditional reserve, and also lists some other properties of MDAm.

Theorem 3. 3-a. MDAm is fair with conditional reserve and minimally responsive.

3-b. Let (R, r) be a problem. No matching is fair with conditional reserve and Pareto dominates

MDAm(R, r) for the minority. Also, no matching is fair with conditional reserve and

Pareto dominates MDAm(R, r).

3-c. Let (R, r) be a problem. No matching is fair and Pareto dominates MDAm(R, r) for the

minority. Also, no matching is fair and Pareto dominates MDAm(R, r).

Proof. See Appendix 8.8.

Also, at each problem (R, r), MDAm(R, r) either Pareto dominates or is equal toDAm(R, r).

In fact, at each round of the MDAm algorithm, no student is made worse off.

Proposition 5. For each problem, and for each round r ≥ 1 of the MDAm algorithm, the

matching obtained at the end of round t matches each student with a school that is at least as

12The definition here is not self-consistent in the sense that it refers to another fairness requirement, fair with
reserve. In Section 8.11, we propose a self-consistent notion and show that all the results we provide are still valid.

13For the case with no affirmative action, in the literature, there are versions of the fairness requirement that
are very similar to fairness with conditional reserve. Two examples are τ -fairness in Alcalde and Romero-Medina
(2014) and reasonable fairness in Kesten (2010) (The notion of reasonable fairness appears in a working paper
version of Kesten (2010), but not in the published version).
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desirable for her as the school she is matched at the end of round t− 1.

Proof. See Appendix 8.9.

Theorem 4. At each problem (R, r), MDAm(R, r) either Pareto dominates or is equal to

DAm(R, r).

Proof. Follows from Proposition 5.

Hafalir et al. (2013) provides simulation results revealing that on average when DAm is

used, reserve-type affirmative action brings significant welfare gains for the minority students.

Theorem 4 shows that all those welfare gains, and even more, are present with MDAm.

6 Strategic properties

A rule ϕ is strategy-proof if no student is ever made better off by misreporting her preferences,

i.e. there are no problem (R, r), student s, and preferences R′s such that ϕs(R
′
s, R−s, r) Ps

ϕs(R, r).

DAm is strategy-proof (Hafalir et al. (2013)). However, Example 2 shows that when MDAm

is used, a majority student can be better off by misreporting her preferences.

Example 2. Let Sm ≡ {m,m′}, SM ≡ {M}, C ≡ {c1, c2, c3}, q ≡ (1, 1, 1), and (rc1 , rc2 , rc3) ≡
(1, 0, 0). Let the preference profile R and the priority profile � be as depicted below. Also, a

preference relation for M , namely R′M , which is different from RM , is depicted.

Rm Rm′ RM R′M �c1 �c2 �c3

c1 c3 c1 c1 M M M

c2 c1 c2 c3 m′ m′ m′

c3 c2 c3 c2 m m m

The underlined matching represents MDAm(R, r). The boxed matching represents MDAm(

R′M , R−M , r). Note that, when the true preferences of M is RM , if she misreports her preferences

as R′M , she is assigned to c1 instead of c2, which makes her better off.

Example 3 shows that, also a minority student can be better off by misreporting her pref-

erences.

Example 3. Let Sm ≡ {m,m′,m′′}, SM ≡ {M}, C ≡ {c1, c2, c3, c4}, q ≡ (1, 1, 1, 1), and

(rc1 , rc2 , rc3 , rc4) ≡ (1, 0, 0, 0). Let the preference profile R and the priority profile � be as depicted

below. Also, a preference relation for m′, namely R′m′, which is different from Rm′, is depicted.
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Rm Rm′ R′m′ Rm′′ RM �c1 �c2 �c3 �c4

c1 c2 c2 c4 c1 M M m′ m′

c3 c3 c4 c1 c2 m′′ m′′ M M

c2 c4 c3 c2 c3 m m′ m m
c4 c1 c1 c3 c4 m′ m m′′ m′′

The underlined matching represents MDAm(R, r). The boxed matching represents MDAm(

R′m′ , R−m′ , r). Note that, when the true preferences of m′ is Rm′, if she misreports her preferences

as R′m′, she is assigned to c2 instead of c3, which makes her better off.

Each of the two examples above shows that MDAm is not strategy-proof. Although this is

bad news for the MDAm, Theorem 5 shows that it is not possible to satisfy strategy-proofness

if we insist on fairness with conditional reserve and minimal responsiveness.

Theorem 5. No rule is fair with conditional reserve, minimally responsive, and strategy-proof.

Proof. Follows from Theorem 6.

In fact, this impossibility result is not due to our particular fairness notion. We will show

that a “minimal fairness under affirmative action” is enough to have an impossibility.

Let (R, r) be a problem. A matching µ is fair on the no–affirmative-action side if the

following conditions are satisfied.

1. No students’ priority is violated at any school by any student of the same type,

2. No students’ priority is violated at any school c such that rc = 0.

Note that fairness on the no–affirmative-action side requires that on the side of the problem

where the affirmative action constraints are not effective, the fairness requirement is the same

as the usual fairness requirement for the no–affirmative-action case. One way to incorporate a

minimal degree of affirmative action is to require the following: there should be no pair of a

minority student and a majority student such that the minority student prefers the school the

majority student is assigned, the reserve at that school is not exhausted yet, and exchanging

their seats results in an assignment that is fair on the no–affirmative-action side. To formalize

it, given a pair of students s, s′ ∈ S, let µs↔s′ denote the matching obtained by only switching

the seats of s and s′ at µ. A matching µ is minimally fair under affirmative action, or simply

minimally fair, if the following conditions are satisfied.

1. µ is fair on the no–affirmative-action side,

2. there are no m ∈ Sm, M ∈ SM , and c, c′ ∈ C such that

(a) µ(m) = c and µ(M) = c′,
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(b) c′ Pm c, |µm(c′)| < rc′ , rc = 0, and M �c m,

(c) µm↔M is fair on the no–affirmative-action side.

Theorem 6. No rule is minimally fair, minimally responsive, and strategy-proof.

Proof. See Appendix 8.10.

7 Conclusion

This paper deals with a common problem with current affirmative action policies: a stronger

affirmative action may hurt some minority students without benefiting any minority student.

First, we showed that the problem is pervasive: it disappears only when the minority students

mostly have priority over the majority students. Then, we proposed a new affirmative action

rule which never hurts a minority student without benefiting another minority student.

Given that now we have a rule which is minimally responsive, a natural question is whether

there are rules that are “more responsive” to affirmative action. An ideal affirmative action rule

would make no minority student worse off when we move to a stronger affirmative action. In fact,

the affirmative action parameter can be thought of as resources made available to the minority

students, and an increase in the parameter can be interpreted as an increase in these resources. A

natural requirement is that when the resources available to a group increases, no member of the

group should be hurt. A requirement similar to this requirement, namely resource monotonicity,

has been studied for problems where finitely many objects are to be allocated among agents.14,15

However, we know that in such models it is not possible to satisfy resource monotonicity along

with some other requirements (See for example Ehlers and Klaus (2003) and Thomson (2003)).

Looking for rules that are more responsive to affirmative action, and that make, in case of a

stronger affirmative action, a “sufficient” proportion of the minority students better off, is an

interesting research direction.

14In some models, agents are allowed to consume at most one object, in others they can consume more than
one. Considering each seat at each school as an object, a school choice problem fits in the model of allocating
objects when each agent can receive at most one. Yet, in most of these models, objects are not assigned priority
orderings.

15Resource monotonicity in these models is not exactly the counterpart of the requirement we consider here,
since the reserves for the minority students are not the only resources available for the minority students, and
the reserves for minority students are not resources only for the minority students, except for the quota-type
affirmative action.
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8 Appendix

8.1 Proof of Lemma 1

Proof. Let µ be fair with quota at (R, r). We will construct the matching µ′ in the following way.

Each school keeps the minority students that it was assigned at µ. To allocate the remaining

seats (if any), we choose a fair matching at the problem where the minority students are absent,

and each school’s capacity is set equal to the minimum of the number of remaining seats and

its majority quota at (R, r′). Formally, for each c ∈ C, let q′c = min{qc − |µm(c)|, qc − r′c}.
Let RM = (Rs)s∈SM . Let �M be the restriction of � to the majority students. Consider the

problem (SM , C,RM ,�M , q′). Let µ′′ be a matching that is fair at this problem.16 Let µ′ be

defined as follows: each school is assigned the minority students that are assigned to it at µ and

the majority students that are assigned to it at µ′′, i.e. for each c ∈ C, µ′(c) = µm(c) ∪ µ′′(c).
We claim that µ′ is fair with quota at (R, r′). Since µ is fair with quota at (R, r) and µ′′

is fair at (SM , C,RM ,�, q′), for each s ∈ S, then µ′(s) Rs s. Suppose that there are s ∈ S and

c ∈ C such that c Ps µ(s). Suppose that s ∈ Sm. Since µ is fair with quota at (R, r), for each

s′ ∈ µ(c), s′ �c s. So, U�c (s) ≥ qc + 1. Since (Sm, SM , C,�, q) gives full priority to the minority,

for each s′ ∈ SM , s �c s
′. Thus, µ′(c) = µ(c) = µm(c), and for each s′ ∈ µ′(c), s′ �c s.

Suppose that s ∈ SM . Since µ′′ is fair at (SM , C,RM ,�, q′), µ′(c) = qc, and for each

s′ ∈ µ′M (c), s′ �c s. Suppose that there is s′ ∈ µ′m(c) such that s �c s
′. Now, since µ′(c) = qc

and for each s′ ∈ µ′M (c), s′ �c s, there is s′′ ∈ Sm such that s �c s
′′ and U�c (s′′) ≥ qc + 1, which

contradicts the assumption that (Sm, SM , C,�, q) gives full priority to the minority. Hence, µ′

is fair with quota at (R, r′).

8.2 Proof of Theorem 1

Proof. Only if part. Suppose that (Sm, SM , C,�, q) does not give priority to the minority.

Then there are a pair of students m ∈ Sm,M ∈ SM , and a school c ∈ C such that M � m and

|U�c (m)| ≥ qc + 1. Let c′ ∈ C, c′ 6= c. Let S′ ⊆ U�c (m) be such that m,M ∈ S′ and |S′| = qc + 1.

Let R ∈ RS be as depicted below: c′ PM c PM M , and for each c′′ ∈ C \ {c, c′}, M PM c′′; for

each s ∈ S′ \ {M}, c Ps s, and for each c′ ∈ C \ {c}, s Ps c
′; for each s ∈ S \ S′ and for each

c ∈ C, s Ps c.

16There is a fair matching at this problem. One such matching can be found by the deferred acceptance
algorithm.
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RM (Rs)s∈S′\{M} (Rs)s∈S\S′

c′ c s

c s
...

M
...

...

Let for each c ∈ C, rc = 0. Let r′c′ = qc′ , and for each c 6= c′, r′c = rc. Let µ be the matching

defined as follows: µ(c) = S′ \ {M}, µ(c′) = M , and for each c′′ ∈ C \ {c, c′}, µ(c′′) = ∅. Let µ′

be the matching defined as follows: µ(c) = S′ \ {m}, and for each c′′ 6= c, µ(c′′) = ∅. Let ϕ be a

rule that is fair with quota. Since ϕ is fair with quota, ϕ(R, r) = µ and ϕ(R, r′) = µ′. Moreover,

µ Pareto dominates µ′ for the minority. Since r′ ≥ r, ϕ is perversely responsive.

If part. Suppose that (Sm, SM , C,�, q) gives full priority to the minority. Let µ be fair

with quota at R. By Lemma 1, for each r ≤ q, there is a matching, say µ(r), such that µ(r) is fair

with quota at (R, r) and for each s ∈ Sm, µ(s) = µ(r)(s). Let ϕ be the rule defined as follows:

for each (R, r), ϕ(R, r) = µ(r). Note that ϕ is fair with quota. Moreover, given two problems

(R, r), (R, r′), and for each s ∈ Sm, ϕs(R, r) = ϕs(R, r
′). Hence, ϕ is minimally responsive.

8.3 Proof of Proposition 1

Proof. Let (Sm, SM , C, q, R,�, r) be the problem defined as follows. Let Sm ≡ {m1,m2}, SM ≡
{M}, C ≡ {c1, c2}. Let q ≡ (1, 1), r ≡ (0, 0), and r′ ≡ (1, 0). Let � and R be as depicted below.

�c1 �c2 Rm1 Rm2 RM

M M c1 c2 c1
m2 m2 m1 c1 c2

m1 m1 c2 m2 M

Only one matching is fair with reserve at (R, r): the underlined matching. Let us call it µ.

Only one matching is fair with reserve at (R, r′): the boxed matching. Let us call it µ′. Now,

observe that µ Pareto dominates µ′ for the minority at R, although r′ ≥ r.

8.4 Proof of Proposition 3

Proof. Let µ ≡ DAm(R, r) and µ′ ≡ DAm(R, r′). We argue by contradiction. Suppose that

there is M ∈ SM such that µ′(M) PM µ(M). Let c ≡ µ(M), c1 ≡ µ′(M).
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Step 1. Since c1 PM c and µ(M) = c, there is a step of the DAm(R, r) algorithm, say

k1, at which M is rejected by c1. Note that at this step the capacity of c1 is exhausted. Since

M ∈ µ′(c1), there is a student s ∈ S who is temporarily accepted by c1 at Step k1 of the

DAm(R, r) algorithm and s /∈ µ′(c1). We claim that there is such a student who is a majority

student. To see this, suppose that s ∈ Sm. Note that since µ Pareto dominates µ′ for the

minority at R, µ(s) Rs µ′(s). Also, since s is temporarily accepted by c1 at a step of the

DAm(R, r) algorithm, then c1 Rs µ(s). These statements together imply that c1 Ps µ
′(s). Since

µ′ is fair with reserve at (R, r′), M �c1 s. Moreover, since s is temporarily accepted by c1 at

Step k of the DAm(P1) algorithm while M is rejected at the same step, the number of minority

students temporarily accepted by c1 at that step is at most rc1 . Also, since µ′ is fair with reserve

at (R, r′) and c1 Ps µ
′(s), then |µ′m(c1)| = r′. These statements, together with r′ ≥ r, imply

that there is a majority student, say M1, who is temporarily accepted by c1 at Step k1 of the

DAm(R, r) algorithm and M1 /∈ µ′(c1).
Step 2. Since M1 �c1 M and µ′ is fair with reserve at (R, r′), then µ′(M1) PM1 µ(M1) = c1.

Let c2 ≡ µ′(M1). By the same arguments as in Step 1, there is M2 ∈ SM such that there is a step

of the DAm(R, r) algorithm, say k2, at which M1 is rejected by c2, M2 is temporarily accepted

by c2 at the same step, and M2 /∈ µ′(c2). Now, since c2 PM1 c1, then k2 < k1. Continuing

in this fashion, eventually we have ct ∈ C and Mt−1,Mt ∈ SM such that at Step 1 of the

DAm(R, r) algorithm, Mt−1 is rejected by ct, Mt is temporarily accepted by ct, and Mt /∈ µ′(ct),
Mt−1 ∈ µ′(ct). Note that ct is the top-choice of Mt, and Mt �ct Mt−1. Yet Mt /∈ µ′(ct),

Mt−1 ∈ µ′(ct), contradicting the assumption that µ′ is fair with reserve at (R, r′).

8.5 Proof of Proposition 4

Proof. First suppose that k = q3. Let S1, S2, S
′
2, S3, S

′
3, . . . , SK−1, S

′
K−1, SK be sets of students

such that |S1| = q3, SK = qK , and for each t ∈ 2, . . . ,K − 1, |St| = qt+1, |S′t| = qt − qt+1. Let

Sm ≡ S′3 ∪ S′4 ∪ · · · ∪ S′K−1 ∪ SK and SM ≡ S1 ∪ S2 ∪ · · · ∪ SK−1.
Let � be a priority profile as partially depicted below. Only the depicted part of the priority

profile is relevant for the proof. Each student in S1 has higher priority at c1 than each student

who is not in S1; each student in S′2 has higher priority at c2 than each student who is not in S′2;

each student in S2 has higher priority at c2 than each student who is not in S2 ∪ S′2, and so on.
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�c1 �c2 �c3 �c4 �c5 · · · �cK

S1 S′2 S2 S3 S4 · · · SK−1
... S′3 S′3 S4 S5 · · · SK

... S3 S′3 S′4 · · · S′K−1

S′K−1
...

...
...

...
...

SK
S2
S1
...

Let R be a preference profile as partially depicted below. Only the depicted part of the pref-

erence profile is relevant for the proof. Note that for each set in S1, S2, S
′
2, S3, S

′
3, . . . , SK−1, S

′
K−1, SK ,

students in that set have the same preferences.

S1 S2 S′2 S3 S′3 · · · SK−1 S′K−1 SK
c2 c2 c2 c3 c3 · · · cK−1 cK−1 cK

c3 c4 c4 c5 c5 · · · c3 c3 c3
c5 c5 c6 c6 · · · c4 c4 c4

...
...

...
...

... · · ·
...

...
...

cK cK cK−2 cK−2 cK−2
cK cK c2 c4 c2 cK cK−1

cK c3 c3 c4 c2
... cK c2 c2

c1 c1 c1 c1 c1 c1 c1 c1

Let r ≡ (0, 0, . . . , 0) and r′ ≡ (0, q3, 0, 0, . . . , 0). In the first step of the DAm(R, r) algorithm,

“each student in S1” (from now on, we say Sk instead of “each student in Sk”) is rejected by

c2, and all the other students are tentatively accepted by their most-preferred schools. In the

following steps, S1 is rejected by all the other schools but c1, until eventually accepted by c1.

Thus, DAm(R, r) is the underlined matching.

In the first step of the DAm(R, r′) algorithm, S2 is rejected by c2, and all the other students

are tentatively accepted by their most-preferred schools. Note that due to the affirmative action

parameter, S2 is rejected by c2 in favor of the students in S1 who have lower priority at c2. In

the following steps, S2 is rejected by schools c4, c5, . . . , cK , and then applies to c3. At this step,

S2 is tentatively accepted by c3. At the same step, S3 ∪ S′3 is tentatively rejected by c3. In the

following steps, S3 ∪ S′3 is rejected by schools c5, c6, . . . , cK , and c4, and then S3 is rejected by

c2, S
′
3 is rejected by c4. Then, S3 applies to c4, is tentatively accepted, and S4 ∪ S′4 is rejected
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by c4. At the same step, S′3 applies to c2, is tentatively accepted, and the |S′3| lowest-priority

students in S1 are rejected by c2. These rejected students, after being rejected by all the other

schools but c1, are eventually accepted by c1.

Continuing similarly, we reach a step at which SK−1 is tentatively accepted, and SK is re-

jected, by cK . Then, after being rejected by schools c3, c4, . . . , cK−1, eventually SK is tentatively

accepted by c2 and at the same step the |SK | lowest-priority students in S1 are rejected by c2. At

this point no student in S1 is tentatively accepted by c2 because |S′3|+ |S′4|+ · · ·+ |S′K−1|+ |SK | =
q3 = |S1|. These rejected students, after being rejected by all the other school but c1, are even-

tually accepted by c1. Thus, DAm(R, r) is the matching in boxes.

To cover the case of an arbitrary k such that q3 ≤ k ≤ q3 + q4 + · · · + qK , all we need to

do is to switch k − q3 of the majority students in S3 ∪ S4 ∪ · · · ∪ SK−1 to minority students.

Everything else is as above.

8.6 Proof of Theorem 2

Proof. If part. Suppose that (Sm, SM , C,�, q) has a cycle, say (m,m′,M, s1, . . . , sk−2, c1, . . . , ck,

N1, . . . , Nk). Let R ∈ RS be defined as follows:

ck Rm c1 Rm m, and for each c ∈ C \ {ck, c1}, m Rm c;

c1 Rm′ m
′, and for each c ∈ C \ {c1}, m′ Rm′ c;

c1 RM c2 RM M , and for each c ∈ C \ {c1, c2}, M RM c;

for each t ∈ {1, . . . , k − 2}, ct+1 Rst ct+2 Rst st, and for each c ∈ C \ {ct+1, ct+2}, st Rst c.

Rm Rm′ RM Rs1 · · · Rst · · · Rsk−2

ck c1 c1 c2 · · · ct+1 · · · ck−1
c1 m′ c2 c3 · · · ct+2 · · · ck

m
... M s1 · · · st · · · sk−2

...
...

... · · ·
... · · ·

...

Let r be defined as follows: for each t ∈ {1, . . . , k}, qct ≡ |Nt ∩ Sm|. Let r′ be defined

as follows: for each c ∈ C \ c1, r′c ≡ rc and r′c1 ≡ rc1 + 1. Note that Nc1 = qc1 − 1, so

r′c1 ≤ qc1 . Now, there is only one matching that is fair with reserve at (R, r), say µ, defined as

follows: µ(c1) = N1 ∪ {M}; for each t ∈ {2, . . . , k − 1}, µ(ct) = Nt ∪ {st−1}; µ(ck) = Nk ∪ {m}.
Also, there is only one matching that is fair with reserve at (R, r′), say µ′, defined as follows:

µ′(c1) = N1 ∪ {m}; µ′(c2) = N2 ∪ {M}; for each t ∈ {3, . . . , k}, µ(ct) = Nt ∪ {st−2}. Note that

µ(m) Pm µ′(m) and for each s ∈ Sm, µ(s) Rs µ
′(s). Thus µ Pareto dominates µ′ at R for the

minority.
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Only if part. Suppose that (Sm, SM , C,�, q) is acyclic. We will show that DAm, which

is fair with reserve, is minimally responsive. Suppose that DAm is perversely responsive. Then

there are P1 = (R, r) and P2 = (R, r′) such that r′ ≥ r and DAm(P1) = µ Pareto dominates

DAm(P2) = µ′ for the minority at R. By Proposition 3, DAm(P1) = µ Pareto dominates

DAm(P2) = µ′ at R.

Step 1. For each c ∈ C, if µ(c) 6= µ′(c), then |µ(c)| = |µ′(c)| = qc. To see this, first note that

since µ′ is fair with reserve at (R, r′) and µ Pareto dominates µ′ at R, if there is s ∈ µ(c) \µ′(c),
then |µ′(c)| = qc. Thus for each c ∈ C, if µ(c) \ µ′(c) 6= ∅ then |µ′(c) \ µ(c)| ≥ |µ(c) \ µ′(c)|.
Since obviously, for each c ∈ C such that µ(c) \ µ′(c) = ∅, |µ′(c) \ µ(c)| ≥ |µ(c) \ µ′(c)|, we

have that for each c ∈ C, |µ′(c) \ µ(c)| ≥ |µ(c) \ µ′(c)|. Now, suppose that there is c ∈ C

such that |µ′(c) \ µ(c)| > |µ(c) \ µ′(c)|. Then there is s ∈ S such that µ(s) = s, µ′(s) 6= s,

and µ(s) Ps µ(s) = s, which contradicts the assumption that µ′ is fair with reserve at (R, r′).

Hence, for each c ∈ C, |µ′(c) \ µ(c)| = |µ(c) \ µ′(c)|. Thus, for each c ∈ C, if µ(c) 6= µ′(c) then

|µ(c)| = |µ′(c)| = qc.

Step 2. There is a list (m,m′,M, s1, . . . , sk−2, c1, . . . , ck) consisting of a pair of minority

students m,m′ ∈ Sm, a majority student M ∈ SM , a list of students s1, s2, . . . , sk−1 ∈ S and a

list of schools c1, c2, . . . , ck ∈ C such that

1) M �c m
′, m �c m

′, and

2) µ(M) = c, µ′(M) = c1, for each t ∈ {1, . . . , k − 1}, µ(st) = ct, µ
′(st) = ct+1, and

µ(m) = ck, µ′(m) = c.

To see this, since µ 6= µ′, there are a step of DAm(P1) algorithm, say Step k, m′ ∈ Sm, and

c1 ∈ C such that up to Step k, the student applications and acceptance-rejection decisions of the

schools are the same in DAm(P1) algorithm and DAm(P2) algorithm, but in Step k of DAm(P2)

algorithm the minority student m′, who was rejected by c1 at Step k of DAm(P1) algorithm, is

temporarily accepted by c1. Since m′ is rejected by c1 in DAm(P1) algorithm, c1 Pm′ µ(m′).

Then µ being fair with reserve at (R, r) implies that |µ(c1)| = qc1 and |µm(c1)| = qc1 . Moreover,

given that the set of students applying to c1 at Step k of DAm(P1) algorithm and DAm(P2)

algorithm are the same, m′ being accepted at Step k of DAm(P2) algorithm while being rejected

at the same step of DAm(P1) algorithm implies that the number of minority students temporarily

accepted by c1 at Step k of DAm(P2) algorithm is greater than rc1 . Hence, |µ′m(c1)| > rc1 , and

in particular |µ′m(c1)| > |µm(c1)| and |µ′M (c1)| < |µM (c1)|. Now, note that m′ /∈ µ′(c1) because

otherwise, we would have µ′(m) Pm µ(m), contradicting the assumption that µ Pareto dominates

µ′ at R. So, letm ∈ Sm be such thatm /∈ µ(c1), m ∈ µ′(c1). LetM ∈ SM be such thatm ∈ µ(c1),

m /∈ µ′(c1). Note that m �c1 m
′ and M �c1 m

′. Since for each c ∈ C such that µ(c) 6= µ′(c),

|µ(c)| = |µ′(c)| = qc, there is a sequence of students (s1, s2, . . . , sk−2) and a sequence of schools

(c1, c2, . . . , ck) such that µ′(M) = c2, µ(m) = ck, and for each t ∈ {1, . . . , k − 1}, µ(st) = ct+1,
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µ′(st) = ct+2. So we have the desired list.

Step 3. There is a list of subsets of students (N1, . . . , Nk) such that (m,m′,M, s1, . . . , sk−2,

c1, . . . , ck, N1, . . . , Nk) forms a cycle. To see this, since c1 PM µ′(M) and c1 Pm′ µ
′(m′), stability

of µ′ at (R, r′) implies that |µ′(c1)| = qc1 and for each s ∈ µ′(c1) ∩ SM , s �c1 M . Note that

m ∈ µ′(c1). Let N1 ≡ |µ′(c1) \ {m}|. Note that (m′, N1) ∈ T (M, c1).

Since c2 Ps1 µ
′(s1), stability of µ′ at (R, r′) implies that |µ′(c2)| = qc2 . Moreover, if s1 ∈ Sm,

then for each s ∈ µ′(c2), s �c2 s1. Also if s1 ∈ SM , then for each s ∈ µ′(c2) ∩ SM , s �c2 s1,

M �c s2. Let N2 ≡ |µ′(c2) \ {M}|. Note that (M,N2) ∈ T (s1, c2).

Let t ∈ {3, . . . , k−1}. Since ct Pst−1 µ
′(st−1), stability of µ′ at (R, r′) implies that |µ′(ct)| =

qct . In case st−1 ∈ Sm, for each s ∈ µ′(ct), s �ct st−1. In case st−1 ∈ SM , if st ∈ Sm then for

each s ∈ µ′(ct)∩SM , s �ct st−1, and if st−2 ∈ SM , then st−2 �ct st−1. Let Nt ≡ |µ′(ct) \ {st−2}|.
Note that (st−2, Nt) ∈ T (st−1, ct).

Since ck Pm µ′(m), stability of µ′ at (R, r′) implies that |µ′(ck)| = qck and for each s ∈ µ′(ck),

s �ck m. Moreover sk−2 �ck m. Let Nk ≡ |µ′(ck) \ {sk−2}|. Note that (sk−2, Nk) ∈ T (m, ck).

Thus (N1, . . . , Nk) is the desired list of subsets of students.

8.7 Proof of Proposition 2

Proof. Suppose that (Sm, SM , C,�, q) is acyclic. If M has lower priority than each minority

student at each school, then the statement obviously holds. So suppose that there are c ∈ C
and m ∈ Sm such that M has higher priority than m at c. If there is no other school at which

M has a higher priority than a minority student different from m, again the statement holds.

So, suppose also that there are c′ ∈ C and m′ ∈ Sm such that c 6= c′, m 6= m′, and M has

higher priority than m′ at c′. Let m1 and m2 denote the minority students with the lowest and

second-lowest priorities at c, respectively. Similarly, let m′1 and m′2 denote the minority students

with the lowest and second-lowest priorities at c′, respectively.

Suppose that m1 6= m′1. Then m′1 �c m1. Moreover, since |Sm| > qc + qc′ , there are two

disjoint sets of minority students N1 ⊆ U�c (m1) \ {m1,m
′
1,M} and N2 ⊆ U�c′ (m

′
1) \ {m′1,M}

such that N1 = qc − 1 and N2 = qc′ − 1. Then, (m′1,m1,M, c, c′, N1, N2) constitutes a cycle,

contradicting the assumption that (Sm, SM , C,�, q) is acyclic.

Suppose that m1 = m′1. Then, either M �c m2 or M �c′ m
′
2. Without loss of generality,

suppose that M �c m2. Now, by the same arguments as in the above paragraph by letting m2

play the role of m′1, we construct a cycle, contradicting the assumption that (Sm, SM , C,�, q) is

acyclic.
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8.8 Proof of Theorem 3

Proof. We first prove 3− b and 3− c, and then prove 3− a.

3 − b, 3 − c : We will prove a stronger result, which will in turn imply these two results.

Consider the following auxiliary fairness notion. A matching is weakly fair if the following

conditions are satisfied.

1. NLet s, s′ ∈ S and c ∈ C. Then, if the priority of s is violated by s′ at c, then s ∈ SM ,

s′ ∈ Sm, and the priority of s is violated by s′ at c at unexceeded minority reserve.

2. No student prefers her outside option to her assignment.

3. If a student prefers a school c to her assignment, then the capacity of c is exhausted, i.e.

|µ(c)| = qc.

Note that this new fairness notion is obtained by removing Part a of the “conditional priority

requirement” in the definition of fairness w.r.t. weak-reserve. Observe that, if a matching is

fair with conditional reserve, then it is also weakly fair. Also, if a matching is fair, then it is

also weakly fair. Hence, proving that, at each problem (R, r), no matching is weakly fair and

Pareto dominates MDAm(R, r) for the minority and also no matching is weakly fair and Pareto

dominates MDAm(R, r), implies 3− b and 3− c.
Step 1. Let (R, r) be a problem. We first prove that no matching is weakly fair and Pareto

dominates MDAm(R, r) for the minority. We argue by contradiction. Suppose that there is a

weakly fair matching µ which Pareto dominates MDAm(R, r) for the minority at R. Then, there

is a minority student m who is rejected at a step of the last round of MDAm(R, r) algorithm

by the school she is assigned to at µ. Let T denote the last round of MDAm(R, r) algorithm.

Let k be the first step of round T at which a student (not necessarily a minority student), say

s, is rejected by µ(m). Note that for each student s′ who is tentatively accepted by c at Step k

of round T , c Rs′ µ(s′), since otherwise s′ would have applied to (and be rejected by) µ(s′) in

round T before Step k, contradicting the assumption that k is the first step at which a student

is rejected by the school she is assigned to at µ.

First, suppose that s is treated as a minority at c in round T , i.e. s ∈ fmT (c). Note that

the minority reserve at c is exhausted at step k. Let m ∈ fmT (c) be a minority student who is

tentatively assigned to c at Step k. Note that m �c s. Since c Rm µ(m) and µ is weakly fair,

m ∈ µ(c). Thus all the students in fmT (c) who are tentatively assigned to c at Step k are assigned

to c at µ. Also s, who is rejected at Step k, is assigned to c at µ. Hence |µm(c)| > rc. Moreover,

there is a student s′ who is treated as a majority in round T and tentatively accepted by c at

Step k but s′ /∈ µ(c). Moreover, s′ �c s, and s′ is not assigned to a school better than c at µ,

contradicting the assumption that µ is weakly fair.

Now, suppose that s is treated as a majority student at c in round T , i.e. s /∈ fmT (c), and

also suppose that the minority reserve capacity is exhausted at Step k. Then, each student who
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is treated as a minority student in round T and who is tentatively accepted at Step k by c has

a higher priority than s at c, and moreover is assigned to c at µ due to µ being weakly fair. But

then, there is a student s′, who is treated as a majority student by c at round T , is tentatively

accepted at Step k by c, and has a higher priority than s at c but is not assigned to c at µ.

Note that if the minority reserve of c is exhausted also at µ, and if s is a minority student, then

µm(c) > rc. But since µ is weakly fair, s′ must be assigned to a more preferred school at µ to

which she must have applied before Step k.

Lastly, suppose that s is treated as a majority at c in round T , i.e. s /∈ fmT (c), and also

suppose that the minority reserve capacity is not exhausted at Step k. Each student who is

treated as a minority in round T is tentatively accepted by c at Step k, and has higher priority

than s at c, is assigned to c at µ by the same arguments as in the previous case. So suppose

that there is a student s′ who is treated as a minority in round T such that s �c s
′, and s′ is

tentatively accepted by c at Step k but is not assigned to c at µ. Observe that s is a majority

student and s′ is a minority student. Remember that s′ prefers c to her assignment at µ. But

since µ Pareto dominates MDAm(R, r) for the minority, s′ must be rejected by c in the last

round after Step k. But then, s′ is an interfering student at c, contradicting the assumption that

this round is the last round. Hence, each student who is treated as a minority in round T and

tentatively accepted at Step k by c is assigned to c at µ. But then, there is a student, say s′,

who is treated as a majority student in round T is tentatively accepted at Step k by c, and has

a higher priority than s at c, but is not assigned to c at µ. But since µ is weakly fair, s′ must be

assigned to a better school at µ to which she should have applied before Step k.

Step 2. The following modification of the proof at Step 1 proves that no matching is weakly

fair and Pareto dominates MDAm(R, r). Similarly, suppose that there is a weakly fair matching

µ which Pareto dominates MDAm(R, r) at R. To obtain a contradiction in the proof of at Step

1, there are two parts where we use the fact that “µ Pareto dominates MDAm(R, r) for the

minority at R.” The first one is that in the first paragraph we claim that there is a student who

is rejected at a step of the last round of MDAm(R, r) algorithm by the school she is assigned

to at µ. This claim holds also when µ Pareto dominates MDAm(R, r) at R. The second one is

that in the last paragraph, a minority student is claimed not to be worse off at µ compared to

MDAm(R, r) at R. This claim also holds when µ Pareto dominates MDAm(R, r) at R. With

these modifications, the same arguments yield to a contradiction, which proves the assertion.

3 − a :

Let (R, r) be a problem. By 3− b, no matching is fair with conditional reserve and Pareto

dominates MDAm(R, r) for the minority. Thus, no matching is fair with reserve and Pareto

dominates MDAm(R, r) for the minority. Given this, it directly follows that MDAm is fair with

conditional reserve.
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To prove that MDAm is minimally responsive, we argue by contradiction. Suppose that

there are two problems (R, r) and (R, r′) such that r′ ≥ r and MDAm(R, r) Pareto dominates

MDAm(R, r′) for the minority at R. Let µ ≡MDAm(R, r) and µ′ ≡MDAm(R, r′). By Part 2,

µ is not fair with conditional reserve at (R, r′). Note that µ is fair with conditional reserve at

(R, r) since MDAm is fair with conditional reserve. So, for each s ∈ S, µ(s) Rs s. Observe that

at µ, if the priority of a minority student is violated at (R, r), it is also violated at (R, r′).

Suppose that the priority of a majority student M is violated at a school c at (R, r′). If

|µm(c)| ≤ r′c and there is a majority student M ′ ∈ µ(c) such that M �c M
′, then the priority

of M is violated at c also at (R, r). Suppose that |µm(c)| > r′c and there is s′ ∈ µ(c) such that

s �c s
′. Since |µm(c)| ≥ r′c ≥ rc, again µ is not weakly fair at (R, r) contradicting the assumption

that MDAm is fair with conditional reserve.

8.9 Proof of Proposition 5

Proof. Let (R, r) be a problem. Let µ and µ′ be the outcomes of the MDAm(R, r) algorithm at

round t − 1 and t, respectively. We argue by contradiction. Suppose that there is s ∈ S such

that µ(s) Ps µ
′(s). Let c1 ≡ µ(s) and c ≡ µ′(s). Observe that there is a step of DAm(fmt , R, r)

algorithm, say Step k1, at which s is rejected by c1. Also note that at this step the capacity of

c1 must be exhausted.

Step 1. We claim that there is a student s1 ∈ S such that s1 is temporarily accepted by

c1 at Step k1 of DAm(fmt , R, r) algorithm, s1 /∈ µ(c1), and µ(s1) Ps1 c1.

Case 1. Suppose that s is treated as a minority at round t − 1 by c1, i.e. s ∈ fmt−1(c1).

First note that, since s ∈ µ(c1), (s, c1) is not an interfering pair of round t− 1 of MDAm(R, r)

algorithm. So, s ∈ fmt (c1). Moreover, at Step k1 of DAm(fmt , R, r) algorithm, at least r minority

students are tentatively accepted by c1. So, for each student s′′ which is tentatively accepted by

c1 at that step, s′′ �c1 s. If |µm(c)| ≤ qmc1 , then there is a minority student s′ ∈ Sm such that

such that s′ is temporarily accepted by c1 at Step k1 of DAm(fmt , R, r) algorithm and s′ /∈ µ(c1).

Then, also µ(s′) Ps′ c1. If |µm(c)| > qmc1 , then there is a student s′ ∈ S such that such that s′ is

temporarily accepted by c1 at Step k1 of DAm(fmt , R, r) algorithm and s′ /∈ µ(c1). Then, also

µ(s′) Ps′ c1.

Case 2. Suppose that s is treated as a majority at round t − 1 by c1, i.e. s /∈ fmt−1(c1).
Then s /∈ fmt (c1). If the number of minority students tentatively accepted by c1 at Step k1 of

DAm(fmt , R, r) algorithm is greater than |µm(c1)|, then there is a minority student s′ ∈ Sm such

that s′ is temporarily accepted by c1 at Step k1 of DAm(fmt , R, r) algorithm and s′ /∈ µ(c1).

Then, also µ(s′) Ps′ c1. If the number of minority students tentatively accepted by c1 at Step

k1 of DAm(fmt , R, r) algorithm is not greater than |µm(c1)|, then there is a majority student
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s′ ∈ SM such that s′ is temporarily accepted by c1 at Step k1 of DAm(fmt , R, r) algorithm and

s′ /∈ µ(c1). Note that s′ �c1 s. Then, also µ(s′) Ps′ c1.

Step 2. Let c2 ≡ µ(s1). Since µ(s1) Ps1 µ
′(s1), by the same arguments as in Step 1, there

is s2 ∈ S such that there is a step of DAm(fmt , R, r) algorithm, say k2, at which s1 is rejected by

c2, s2 is temporarily accepted by c2 at the same step, s2 /∈ µ(c2), and µ(s2) Ps2 c2. Now, since

c2 Ps1 c1, then k2 < k1. The fact that we can continue in this fashion contradicts the first step

of DAm(fmt , R, r) algorithm being Step 1.

8.10 Proof of Theorem 6

Proof. Let ϕ be a rule which is minimally fair and minimally responsive. Let Sm ≡ {m,m′},
SM ≡ {M}, C ≡ {c1, c2, c3}, and q ≡ (1, 1, 1, 1). Let (rc1 , rc2 , rc3) ≡ (0, 0, 0) and r′ = (1, 0, 0).

Let the preference profile R and the priority profile � be as depicted below. The preference

profile is depicted twice to indicate the matchings that are fair with conditional reserve at (R, r)

and (R, r′), respectively.

Rm Rm′ RM Rm Rm′ RM �c1 �c2 �c3

c1 c3 c1 c1 c3 c1 M M M

c2 c1 c2 c2 c1 c2 m′ m′ m′

c3 c2 c3 c3 c2 c3 m m m

Only one matching is minimally fair at (R, r): the underlined matching in the leftmost

profile. Let us call it µ1. Then, ϕ(R, r) = µ1. Only one matching is minimally fair at (R, r′):

the boxed matching in the middle profile. Let us call it µ2. Then, ϕ(R, r′) = µ2.

Now, let the preference relation R′M be as depicted below. Let R′ = (Rm, Rm′ , R
′
M ). Below,

the preference profile R′ is depicted twice to indicate the matchings that are fair with conditional

reserve at (R′, r) and (R′, r′), respectively.

Rm Rm′ R′M Rm Rm′ R′M �c1 �c2 �c3

c1 c3 c1 c1 c3 c1 M M M

c2 c1 c3 c2 c1 c3 m′ m′ m′

c3 c2 c2 c3 c2 c2 m m m

Only one matching is minimally fair at (R′, r′): the underlined matching on the leftmost

profile. Let us call it µ′1. Then, ϕ(R′, r) = µ′1. Exactly two matchings are fair with conditional

reserve at (R′, r′): the underlined and boxed matchings on the middle profile. Since ϕ is min-

imally responsive, it can not choose the underlined matching at (R′, r′). Let us call the boxed
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matching µ′2. Then, ϕ(R′, r′) = µ′2. But then, at problem (R, r′), the majority student M is

better off if she reports R′M instead of RM . Thus, ϕ is not strategy-proof.

8.11 A Digression on fairness with conditional reserve

The only difference between fairness w.r.t. the reserve and fairness w.r.t. the conditional reserve

is that with the latter, a priority violation at unexhausted reserve may be justified on the following

grounds: the matching is not Pareto dominated for the minority by another matching that is fair

with reserve. However, a matching that is fair with conditional reserve and exhibits a priority

violation at unexhausted reserve may be Pareto dominated by a matching that is fair with

conditional reserve. In that sense, fairness w.r.t. the conditional reserve is not a self-consistent

fairness notion. A self-consistent fairness notion is the following:

Let M ′ ⊆M be the set of matchings such that for each µ ∈M ′, the followings hold.

1. If there are s, s′ ∈ S and c ∈ C such that the priority of s is violated by s′ at c, then

s ∈ SM , s′ ∈ Sm, and the minority reserve at c is unexceeded at µ, i.e. |µm(c)| ≤ rc.
2. No student prefers her outside option to her assignment.

3. If a student prefers a school c to her assignment, then the capacity of c is exhausted, i.e.

|µ(c)| = qc.

Let (R, r) be a problem. A set of assignments F ⊆ M ′ is a consistently fair set if the

following conditions are met.

1. Internal consistency: for each µ ∈ F such that there is a priority violation at unexhausted

reserve, there is no µ′ ∈ F which Pareto dominates µ for the minority.

2. External consistency: for each µ ∈ M ′ \ F , there is a priority violation at unexhausted

reserve and there is µ′ ∈ F which Pareto dominates µ for the minority.

Proposition 6. At each problem, there is a unique consistently fair set.

Proof. Suppose that there are two consistently fair sets, say F1 and F2, such that F1 6= F2.

Without loss of generality, suppose that there is a matching, say µ, such that µ ∈ F1 \F2. Since

µ /∈ F2, there is a priority violation at unexhausted reserve at µ. Since µ ∈ F1 and F1 is internally

consistent, there is no matching in F1 which Pareto dominates µ for the minority. Since µ /∈ F2

and F2 is externally consistent, there is a matching in F2 which Pareto dominates µ for the

minority. Then, there is µ′ ∈ F2 \ F1 that Pareto dominates µ for the minority. But then, by

symmetric arguments, there is µ′′ ∈ F1 \ F2 which Pareto dominates µ′ for the minority. Now,

µ′′ Pareto dominates µ for the minority, which contradicts F1 being internally consistent.

Let (R, r) be a problem. Let F be the consistently fair set at this problem. A matching µ

is consistently fair if µ ∈ F .
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The notion of a consistently fair set is analogous to the notion of a von-Neumann–Morgenstern

stable set for cooperative games (Neumann and Morgenstern (1944)).17

Proposition 7. MDAm is consistently fair.

Proof. Let (R, r) be a problem. By Theorem 3, there is no matching that is fair with conditional

reserve and Pareto dominates MDAm(R, r) for the minority and there is no matching that is

fair and Pareto dominates MDAm(R, r) for the minority. It is straightforward to show that

MDAm(R, r) ∈M ′. Hence, by external consistency of F , we have MDAm(R, r) ∈ F .

Proposition 8. No rule is consistently fair, minimally responsive, and strategy-proof.

Proof. In the proof for Theorem 5, four problems are considered: (R, r), (R, r′), (R′, r), and

(R′, r′). One can easily check that at each problem, the set of matchings that are fair with

conditional reserve is equal to the set of consistently fair matchings. Thus, the same arguments

in that proof also proves this assertion.

8.12 Two alternative ways to remove interferers

In the MDAm algorithm, at each round, only the interfering minority students of the last step

at which there is an interferer, are treated as majority students. Actually, there are two other

natural ways to proceed. we will show that these two other methods do not work.

1. Method 1: At each round, all the interfering minority students are treated as majority

students at each school they interfere.

2. Method 2: At each round, only the interfering minority students of the first step at which

there is an interferer, are treated as majority students.

We will show that neither of these two methods work: each of the methods is perversely

responsive. Consider the problem (S,C,�, q, R, r) defined as follows. Let Sm ≡ {m1,m2,m3},
SM ≡ {M1,M2}, C ≡ {c1, c2, c3, c4}. Let (qc1 , qc2 , qc3 , qc4) = (1, 1, 1, 2), r = (0, 0, 1, 0), and

r′ = (1, 0, 1, 0). Let� and R be as depicted as follows. Only the top parts of the profiles that

are relevant to the example is depicted.

�c1 �c2 �c3 �c4 Rm1 Rm2 Rm3 RM1 RM2

M1 M1 M2 M2 c1 c2 c3 c1 c3
m3 m2 m2 m1 c4 c3 c1 c2 c4

m1 m3 m4 c4

17Ehlers and Klaus (2007) study von-Neumann–Morgenstern stable sets in matching problems.
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DAm(R, r) is the underlined matching and DAm(R, r′) is the boxed matching. Note that

DAm(R, r) Pareto dominates DAm(R, r′) for the minority, although r′ ≥ r. This is in line with

the fact that DAm is perversely responsive.

DAm(R, r) algorithm is depicted below.

Step c1 c2 c3 c4
1 m1, M1 m2 m3 , M2

2 m1 , M2

Note that there is no interfering pair at (R, r). DAm(R, r′) algorithm is depicted below.

Step c1 c2 c3 c4
1 m1 ,M1 m2 m3 , M2

2 M1 ,m2 M2

3 m2 ,m3

4 m3 ,m1

5 m1 , M2

There are two interfering pairs at (R, r′): (m3, c3) is an interfering pair of Step 3 and

(m1, c1) is an interfering pair of Step 4.

Let us use Method 1 to modify DAm algorithm. Then, for each (m, c) ∈ IP (R, r′), the

interfering minority m is treated as a majority student at school c.

Step c1 c2 c3 c4
1 m1, M1 m2 m3, M2

2 m3, M1 m1

3 m1 , m3

Now, there is no new interfering pair. However, the outcome at (R, r) Pareto dominates

the outcome at (R, r′) for the minority. Thus Method 1 is not minimally responsive.

Instead, let us use Method 2. Remember that the first step of (R, r′) at which there is an

interfering pair is Step 3 and the only interfering pair of that step is (m3, c3).
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Step c1 c2 c3 c4
1 m1 ,M1 m2 m3, M2

2 m3 ,m1 M1 ,m2

3 m2 ,M2 m1

4 m1 , M2

Now, there is no new interfering pair. However, the outcome at (R, r) Pareto dominates

the outcome at (R, r′) for the minority. Thus Method 2 is also not minimally responsive.

So, the order we treat the interfering minority students is crucial for the result. Note that

in the above example, when we move to a stronger affirmative action, a minority student, namely

m1, initiates a chain of rejections, and these rejections cause another minority student, namely

m3, to become an interferer, which eventually results with m1 becoming an interferer. In other

words, we have nested rejection cycles. It turns out that, to achive minimal responsiveness, first

the outer rejection cycle initiated by the last interferer should be dissolved.
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