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Abstract

We study a labor market with finitely many heterogeneous workers and firms to illustrate
the decentralized (myopic) blocking dynamics in two-sided one-to-one matching markets with
continuous side payments (assignment problems, Shapley and Shubik, 1971).

A labor market is unstable if there is at least one blocking pair, that is, a worker and a
firm who would prefer to be matched to each other in order to obtain higher payoffs than
the payoffs they obtain by being matched to their current partners. A blocking path is a
sequence of outcomes (specifying matchings and payoffs) such that each outcome is obtained
from the previous one by satisfying a blocking pair (i.e., by matching the two blocking agents
and assigning new payoffs to them that are higher than the ones they received before).

We are interested in the question if starting from any (unstable) outcome, there always
exists a blocking path that will lead to a stable outcome. In contrast to discrete versions
of the model (i.e., for marriage markets, one-to-one matching, or discretized assignment
problems), the existence of blocking paths to stability cannot always be guaranteed. We
identify a necessary and sufficient condition for an assignment problem (the existence of
a stable outcome such that all matched agents receive positive payoffs) to guarantee the
existence of paths to stability and show how to construct such a path whenever this is
possible.

JEL classification: C71, C78, D63.

Keywords: Assignment problem, competitive equilibria, core, decentralized market, random
path, stability.

1 Introduction

Many markets involve bilateral relationships where each agent of one side of the market can be
matched to any agent of the other side of the market but cannot be matched to any agent from the
same side. Examples for such two-sided matching markets include marriage markets (women and
men), college admissions markets (colleges and students), auction markets (buyers and sellers),
and labor markets (workers and firms). Two-sided matching markets can be partitioned in two
main categories: markets without side payments (e.g., marriage and college admissions markets)
and markets with side payments (e.g., auction and labor markets). Side payments in the form
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of prices, fees, or salaries are a natural feature of many economic situations. Here, we study a
simple two-sided one-to-one matching market with side payments: a labor market with finitely
many heterogeneous workers and firms. To keep the model simple we impose a unit-demand
condition such that each worker accepts at most one job and each firm hires at most one worker.

Two-sided matching markets with side payments –assignment problems– have first been
analyzed by Shapley and Shubik (1971). In an assignment problem, indivisible objects (e.g.,
auctioned items or jobs) are exchanged with monetary transfers (e.g., prices or salaries) between
two finite sets of agents (e.g., buyers/sellers or workers/firms). Agents are heterogeneous in the
sense that each object may have different values to different agents. Each agent either demands
or supplies exactly one unit. Thus, agents can form pairs to exchange the corresponding objects
and at the same time make monetary transfers of the value they create (alternatively, singletons
can execute an outside option).

An outcome for an assignment problem specifies a matching between agents of both sides
of the market and, for each agent, a payoff. An outcome is stable if it is individually rational
and there is no blocking pair, that is, there are no two agents that are not matched with each
other, but in fact would prefer to be. For instance, in a labor market, a worker and a firm form
a blocking pair if both could get higher payoffs than the payoffs they obtain by being matched
to their current partners (if we matched them with higher payoffs, we would be satisfying a
blocking par). An outcome is in the core if no coalition of agents can improve their payoffs
by rematching among themselves. Shapley and Shubik (1971) showed that (a) the core of an
assignment problem and the set of stable outcomes coincide, (b) for any assignment problem,
there always exists a stable outcome, (c) the set of stable outcomes is a complete lattice with
two extreme points, each of them corresponding to an outcome where all the agents of the same
side of the market (e.g., the workers) receive their maximal stable payoffs while the agents of the
other side (e.g., the firms) receive their minimal stable payoffs, and (d) at any stable outcome,
the matching between the workers and the firms is optimal (i.e., the value created by the pairs
in the corresponding matching is maximal). Sotomayor (2003) and Wako (2006) proved that
if there is only one optimal matching, then the core contains infinitely many stable outcomes.
Conversely, the core is a singleton only when multiple optimal matchings exist.

The literature on stability in two-sided matching markets was initiated by Gale and Shapley
(1962) who proposed a centralized procedure, the famous deferred acceptance algorithm, to find
a stable outcome for any marriage or college admissions problem (with responsive preferences).
The deferred acceptance algorithm turned out to be the key element for many centralized market
clearing houses, e.g., for the National Resident Matching Program (Roth, 1984), for school choice
programs (Abdulkadiroğlu and Sönmez, 2003; Abdulkadiroğlu et al., 2005), and for auctions and
trading networks (Demange et al., 1986; Gul and Stacchetti, 2000; Milgrom, 2000; Ausubel, 2006;
Sun and Yang, 2009; Hatfield et al., 2013).1

Dynamic changes in real world (two-sided) matching markets are frequently observed. This
indicates that outcomes often are not stable. For instance, in a labor market, a worker might

1See also Crawford and Knoer (1981), Kelso and Crawford (1982), and Crawford (2008) for centralized processes
in labor markets and Roth and Sotomayor (1990) for an excellent survey on two-sided matching theory until 1990.
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switch to a new job if that increases his salary while the firm who hires him finds his qual-
ification/productivity higher than that of his predecessor. A blocking path for a (two-sided)
matching markets is a finite sequence of outcomes where each outcome is obtained from the
previous one by satisfying a blocking pair taking into account that agents behave myopically,
i.e., agents do not forecast how their decision to block an outcome might influence the future
evolution of the market.

Knuth (1976) showed that for marriage markets a process of myopic blocking may cycle,
i.e., a decentralized process may not converge to a stable outcome. Roth and Vande Vate
(1990) show that for marriage markets there always exists a blocking path starting from any
unstable outcome that leads to a stable outcome in finitely many steps. Assuming that each
blocking pair is selected with strict positive probability, this result implies that a decentralized
blocking process converges to stability with probability one.2 Chen et al. (2012) and Nax et al.
(2013) both analyze a similar decentralized blocking process for labor markets with discrete side
payments. As in Roth and Vande Vate (1990), they construct a blocking path to stability and
show that a decentralized blocking process converges to stability with probability one. Biró et al.
(2013) consider a more general one-sided version of the assignment problem and obtain results
that imply those of Chen et al. (2012) and Nax et al. (2013) with a different proof technique.
Apart from looking at a continuous model instead of a discretized one (as Chen et al. (2012) and
Nax et al. (2013) do), a difference between the work of Biró et al. (2013), Chen et al. (2012),
Nax et al. (2013) compared to ours is that we consider strict blocking while all these other
articles consider weak blocking. This difference induces differentiated results and different proof
techniques and we will discuss the exact relation of these articles with ours in Section 4.3.
The paper is organized as follows:

In Section 2, we introduce the classical assignment model with continuous side payments
(Shapley and Shubik, 1971).

In Section 3, we define a generic blocking path and we show with a few examples that a
blocking path to stability might not exist for all assignment problems. We then state and prove
our main result that, for all assignment problems that satisfy our necessary and sufficient con-
dition (the existence of a stable outcome such that all matched agents receive positive payoffs),
a stable outcome can always be obtained through a finite sequence of outcomes, each outcome
being obtained from the previous one by satisfying a blocking pair under the strict blocking
norm.

Finally, in Section 4, we discuss some relevant points. First, we consider a specific blocking
path where each time a blocking pair is satisfied the blocking agents equally split the surplus
they create. We ask whether such a fair blocking path can be always used to construct a path to
stability (the answer is no). Second, we discuss the probabilistic interpretation of the blocking
path result obtained in Section 3. Third, we discuss in more details the articles by Biró et al.
(2013), Chen et al. (2012), and Nax et al. (2013), and show how their results and our results are
related. Fourth, we propose a centralized stabilization procedure that uses a so-called median
stable outcome as compromise target outcome. Then, we briefly conclude.

2Diamantoudi et al. (2004) establish a similar result for (one-to-one matching) roommate problems and Klaus
and Klijn (2007) for matching markets with couples.
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2 The Assignment Problem

We consider a simple labor market model that matches workers and firms. Let W and F
be two distinct finite sets containing |W | workers and |F | firms, respectively. Thus, the set
of agents equals W ∪ F . We denote generic agents by i, j, a generic worker by w, and a
generic firm by f . We assume that each worker can work for at most one firm and a firm
can employ at most one worker.3 We denote the set of pairs that agents in W × F can form
(including “degenerate” pairs where agents i ∈ W ∪ F form a “pair” (i, i) with themselves) by
P (W,F ) = {(w, f) ∈W × F} ∪ {(i, i) | i ∈W ∪ F}.

A characteristic function for W ∪ F is a function π : P (W,F ) → R+ such that for each
i ∈W ∪F , π(i, i) = 0. The characteristic function π describes the value that agents create when
forming pairs. In particular, π(i, i) = 0 represents the reservation value of an agent i ∈W ∪F .4
A (two-sided one-to-one) assignment problem is a triple (W,F, π).

A matching µ (for assignment problem (W,F, π)) is a function µ : W ∪F →W ∪F of order
two (that is, µ(µ(i)) = i) such that

(i) for w ∈W , if µ(w) 6= w, then µ(w) ∈ F and

(ii) for f ∈ F , if µ(f) 6= f , then µ(f) ∈W .

Two agents i, j ∈ W ∪ F are matched if µ(i) = j (or equivalently µ(j) = i); for convenience,
we also use the notation (i, j) ∈ µ. We refer to µ(i) as i’s partner at µ. If (w, f) ∈ µ, then
we say that worker w and firm f form a couple at µ. If (i, i) ∈ µ, then we say that agent i
remains single at µ. Thus, at any matching µ, the set of agents is partitioned into the set of
agents that form couples C(µ) := {i ∈ W ∪ F | µ(i) 6= i} and the set of agents that remain
single S(µ) := {i ∈W ∪ F | µ(i) = i}; i.e., W ∪ F = C(µ) ∪ S(µ). Let M(W,F ) denote the set
of matchings (for W and F ).

A matching µ is optimal for assignment problem (W,F, π) if, for all matchings µ′ ∈M(W,F ),∑
(i,j)∈µ

π(i, j) ≥
∑

(i,j)∈µ′
π(i, j).

If µ is an optimal matching, then we refer to µ(i) as i’s optimal partner at µ. We say that a
worker w and a firm f are optimal partners if there exists an optimal matching µ such that
(w, f) ∈ µ.

An outcome for assignment problem (W,F, π) is a pair (µ, u) ∈M(W,F )×R|W∪F | where µ
is a matching and u is a payoff vector such that

3This unit-demand assumption has also been made in the following and closely related articles: Shapley and
Shubik (1971), Crawford and Knoer (1981), Chen et al. (2012), Biró et al. (2013), and Nax et al. (2013).

4Our assumptions on the characteristic function π are without loss of generality. It is convenient to normalize
agents’ reservation values to be all equal to zero, i.e., one only measures net gains from the stand alone value each
agent can obtain. This normalization, for instance, can be obtained by assuming that for each (w, f) ∈ W × F ,
worker w requires a minimal salary smin(w, f) to work for firm f and firm f is willing to pay a maximal salary
smax(w, f) for worker w. Then, taking the possibility of not forming a pair into account, the joint value created
equals π(w, f) = max{(smax(w, f)− smin(w, f)), 0} ≥ 0.
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(i) if (w, f) ∈ µ, then uw + uf = π(w, f), and

(ii) if (i, i) ∈ µ, then ui = π(i, i) = 0.

The following property is a voluntary participation condition based on the idea that an agent
can always enforce his reservation value by staying single. An outcome (µ, u) [a payoff vector u]
is individually rational if for each i ∈W ∪ F , ui ≥ 0.

If, at outcome (µ, u) [at payoff vector u], there is a pair (w, f) ∈W ×F such that uw +uf <
π(w, f), then w and f have an incentive to form a couple in order to obtain a higher payoff.
Then, (w, f) is a blocking pair for outcome (µ, u) [for payoff vector u] that creates the blocking
surplus

bs(u; (w, f)) := π(w, f)− uw − uf > 0.

An outcome (µ, u) [a payoff vector u] is stable if

(a) it is individually rational, i.e., for all i ∈W ∪ F , ui ≥ 0 and

(b) no blocking pairs exist, i.e., for all (w, f) ∈W × F , uw + uf ≥ π(w, f).5

Let S(W,F, π) denote the set of stable outcomes for assignment problem (W,F, π).

Remark 1 (Stable Outcomes). The set of stable outcomes coincides with the core (Shapley and
Shubik, 1971): we could model an assignment problem (W,F, π) as a cooperative game with
transferable utility (TU) whose characteristic function υ assigns to each coalition S ⊆ W ∪ F ,
the number υ(S) ≡ maxµ∈M(W∩S,F∩S){

∑
(i,j)∈µ π(w, f)} with υ(∅) = 0. The core of assignment

problem (W,F, π) is the set C(W,F, π) = {(µ, u) | µ is optimal and for all S ⊆W ∪F,
∑
i∈S ui ≥

υ(S)}. Thus, for any assignment problem (W,F, π) an outcome (µ, u) is in the core if matching
µ is optimal and no coalition of agents S ⊆W ∪F can improve their payoffs at u by rematching
among themselves. Furthermore, if an agent is single at a stable outcome, then at each stable
outcome, he receives his reservation value (Demange and Gale, 1985). 4

The following lemma explains how optimal matchings and stable payoffs are related.

Lemma 1 (Optimal matchings and stable outcomes).
(a) If (µ, u) is a stable outcome for assignment problem (W,F, π), then µ is an optimal matching
for assignment problem (W,F, π) (Roth and Sotomayor, 1990, Corollary 8.8).
(b) Let (µ, u) be a stable outcome and µ′ be an optimal matching for assignment problem
(W,F, π). Then, (µ′, u) is a stable outcome for assignment problem (W,F, π) (Roth and So-
tomayor, 1990, Corollary 8.7).

The following lemma states some facts about the payoff structure obtained for the set of
stable outcomes. First, we define agents’ minimal and maximal stable payoffs (which are well-
defined; see Shapley and Shubik, 1971).

5Note that in the definition of an outcome we could replace conditions (i) and (ii) by [
∑

i∈W∪F ui =∑
(i,j)∈µ π(i, j)]. Then, a stable outcome (µ, u) would automatically satisfy (i) and (ii) in the definition of an

outcome (Roth and Sotomayor, 1990, Lemma 8.5). Defining an outcome via conditions (i) and (ii) simplifies our
exposition, but it is not essential for our results.
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Let (W,F, π) be an assignment problem. Then, for each agent i ∈ W ∪ F the set of stable
payoffs equals a closed interval

[ui, ui] = {u′i ∈ R+ | there exists a stable outcome (µ, u) such that ui = u′i}.

Thus, ui is the minimal stable payoff of agent i and ui is the maximal stable payoff of agent
i. Let uW := (uw)w∈W , uF := (uf )f∈F , uW := (uw)w∈W , and uF := (uf )f∈F . If, at some
arbitrary outcome (µ, u), agent i receives a payoff ui /∈ [ui, ui], then we say that agent i receives
an unstable payoff.

Lemma 2 (Side-optimal stable outcomes, Shapley and Shubik, 1971, Theorem 3).
Let µ be an optimal matching for assignment problem (W,F, π). Then, outcomes (µ, (uW , uF ))
and (µ, (uW , uF )) [payoff vectors (uW , uF ) and (uW , uF )] are stable.

Let µ be an optimal matching for assignment problem (W,F, π). Then, outcome
(µ, (uW , uF )) is a worker-optimal stable outcome and outcome (µ, (uW , uF )) is a firm-optimal
stable outcome.

We provide two examples to illustrate the set of stable outcomes and their properties.

Example 1 (An infinite set of stable outcomes). Let (W,F, π) be an assignment problem
given by W = {w}, F = {f}, and π(w, f) = 1; that is, worker w and firm f generate value 1 by
forming a pair. In any stable outcome (µ, u), w and f are matched and the set of stable outcomes
equals S(W,F, π) := {(µ, u) | (w, f) ∈ µ and [uw ≥ 0, uf ≥ 0, and uw + uf = 1]}. Note that
there exists a unique optimal matching µ and that [uw, uw] = [uf , uf ] = [0, 1], (uW , uF ) = (1, 0),
and (uW , uF ) = (0, 1). 4

Example 2 (A finite set of stable outcomes). Let (W,F, π) be an assignment problem
given by W = {w1, w2}, F = {f}, and π(w1, f) = π(w2, f) = 1. A stable outcome (µ, u)
for (W,F, π) matches one of the workers w ∈ W with firm f while the other worker is single
and the firm obtains the total value. Formally, the set of stable outcomes is S(W,F, π) :=
{(µ, u) | [(w1, f) ∈ µ or (w2, f) ∈ µ] and [uw1 = uw2 = 0 and uf = 1]}. Any outcome (µ, u) at
which firm f earns uf < 1 is not stable because then there is always a single worker w with
uw = 0 such that uw + uf < 1 = π(w, f). Note that there exist two optimal matchings and that
[uw1 , uw1 ] = [uw2 , uw2 ] = {0}, [uf , uf ] = {1}, and (uW , uF ) = (uW , uF ) = (0, 0, 1). 4

In Example 1 the set of stable outcomes is infinite: a unique optimal matching supports an
infinite number of stable payoffs. In contrast, the set of stable outcomes in Example 2 is finite:
two optimal matchings support the unique stable payoff.

3 Blocking Paths to Stability

For the following definitions of paths and blocking paths and in the formulation of our results we
only focus on non-degenerate blocking pairs (of one worker with one firm). Our focus on non-
degenerate blocking pairs eases notation without loss of generality since we can always obtain
an individually rational outcome whenever needed by “singleton blocking” by those agents who
obtain negative payoffs.

6



A path for assignment problem (W,F, π) is a (finite!) sequence of outcomes
(µ1, u1), ..., (µk, uk) such that for each l ∈ {1, ..., k − 1}, the outcome (µl+1, ul+1) is obtained
from (µl, ul) by matching a pair (wl, fl). This induces the matching µl+1

µl+1(x) =


fl if x = wl

wl if x = fl

x if x 6= wl, fl and x ∈ {µl(wl), µl(fl)}
µl(x) otherwise

and the payoff vector ul+1

ul+1
x =


ul+1
wl

if x = wl

ul+1
fl

if x = fl

0 if x 6= wl, fl and x ∈ {µl(wl), µl(fl)}
ulx otherwise

such that ul+1
wl

+ ul+1
fl

= π(wl, fl). Thus, at outcome (µl+1, ul+1), agents wl and fl are matched
and generate value π(wl, fl), their former partners are single and receive zero payoffs, and all
the other agents are matched to the same partners and obtain the same payoffs as before.

A blocking path for assignment problem (W,F, π) is a path of individually rational outcomes
(µ1, u1), ..., (µk, uk) such that for each l ∈ {1, ..., k − 1}, the outcome (µl+1, ul+1) is obtained
from (µl, ul) by matching a blocking pair (wl, fl) for (µl, ul) such that the corresponding payoffs
are ul+1

wl
> ulwl and ul+1

fl
> ulfl , i.e., the blocking agents wl and fl split their blocking surplus

such that each of them is strictly better off at outcome (µl+1, ul+1). Hence, while Chen et al.
(2012), Nax et al. (2013), and Biró et al. (2013) require weak blocking,6 we require the more
demanding strict blocking norm for blocking pairs. We say that a blocking path leads to stability
if the last outcome (µk, uk) is stable. We give a simple illustration using the assignment problem
introduced in Example 1.

Example 3 (A blocking path to stability). Consider the assignment problem (W,F, π) in
Example 1: W = {w}, F = {f}, and π(w, f) = 1. Start the sequence with the empty matching
(µ1, u1) as the initial (unstable) outcome, i.e., µ1(w) = w, µ1(f) = f , and u1

w = u1
f = 0. Note

that if w and f form a pair, then their blocking surplus equals bs(u1; (w, f)) = 1. Let (µ2, u2)
be obtained from (µ1, u1) by satisfying this blocking pair using an equal split of the blocking
surplus, i.e., u2

w = u2
f = 1

2 . Then, (µ2, u2) is stable and the blocking path (µ1, u1), (µ2, u2) leads
to stability in one step. 4

Example 3 only shows that such a blocking path to stability might exist. In the next example
we construct an infinite sequence of outcomes by satisfying blocking pairs. Recall that a blocking
path to stability is a finite sequence of outcomes ending in a stable outcome; hence, the following
example does not construct a path to stability. In fact, we prove in Theorem 2 that no path to
stability exists for the following two examples (Examples 4 and 5).

6Under the weak blocking norm, agents payoffs only need to satisfy ul+1
wl
≥ ulwl

and ul+1
fl
≥ ulfl

with at least
one strict inequality.
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Example 4 (An infinite sequence converging to stable payoffs). Consider the assignment
problem (W,F, π) in Example 2: W = {w1, w2}, F = {f}, and π(w1, f) = π(w2, f) = 1.
We construct a sequence (µ1, u1), (µ2, u2), (µ3, u3), ..., such that each outcome is obtained by
matching a blocking pair with the additional property that the blocking pair equally splits the
blocking surplus. Consider outcome (µl, ul) where firm f has a payoff ulf < 1. The blocking
surplus of f with the single worker ws is bs(ul; (ws, f)) = 1 − ulf − 0. Hence, when equally
splitting the blocking surplus, we obtain ul+1

f = ulf + 1
2(1− ulf ) and ul+1

ws = 1
2(1− ulf ).

Start the sequence with the empty matching (µ1, u1) as the initial (unstable) outcome, i.e.,
all agents are single and receive zero payoffs. Select worker w1 and let (µ2, u2) be the outcome
obtained from (µ1, u1) by satisfying the blocking pair (w1, f), such that µ2(f) = w1, u

2
w1 =

1
2 , u

2
w2 = 0, and u2

f = 1
2 . Now, (w2, f) is a blocking pair for (µ2, u2). Satisfy (w2, f) to obtain

the next outcome (µ3, u3), and so on. The following table summarizes the payoffs along the
sequence.

l 1 2 3 4 ... k

ulw1 0 1
2 0 1

8 ...
{

1− ukf if k is even
0 if k is odd

ulw2 0 0 1
4 0 ...

{
0 if k is even
1− ukf if k is odd

ulf 0 1
2

3
4

7
8 ... ukf =

∑k−1
i=1 (1

2)i = 1− (1
2)k−1

At each outcome (µl, ul), if l is even, then firm f is matched to worker w1 and if l is odd
(except for l = 1), then firm f is matched to worker w2 . Since for all l ≥ 1,ulf < 1, the
outcome (µl, ul) is never stable. Therefore, the sequence (µ1, u1), (µ2, u2), (µ3, u3), ... is infinite.
Furthermore, limk→∞ u

k
f = 1 and, for all w ∈ W , limk→∞ u

k
w = 0, i.e., payoffs converge to the

unique stable payoffs. 4

Example 4 shows that a blocking path to stability might not always exist (since the finiteness
of such a path for this specific assignment problem is impossible - a statement we will proof
formally when proving Theorem 2). In this example, that is the case because it is always
possible to make the firm and the respective single worker better off by letting them block the
previous outcome. The only way for a path in this example to end in a stable outcome would
require the firm to obtain the total value generated by the blocking pair. But then, the worker
that blocks with the firm would be indifferent between working for the firm and staying single
(he receives zero payoff in both cases) – it is part of the definition of a blocking path that both
agents in a blocking pair are better off.

Example 4 also illustrates that an infinite blocking sequence can converge to a stable payoff:
the firm’s payoff monotonically increases and converges towards 1 (its stable payoff) and the
workers’ payoffs converge to 0 (their stable payoffs) along the sequence. However, next we show
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that we cannot always guarantee convergence to stable payoffs: we vary the previous example by
constructing an infinite sequence of outcomes that converge to unstable payoffs (in fact, workers’
payoffs do not converge at all).

Example 5 (An infinite sequence not converging to stable payoffs). Let a ∈ (0, 1) and
consider the assignment problem (W,F, π) in Examples 2 and 4: W = {w1, w2}, F = {f},
and π(w1, f) = π(w2, f) = 1. Unlike in Example 4, we construct a sequence that is not based
on equally splitting the blocking surplus. Instead, if at outcome (µl, ul) firm f has a payoff
ulf < a, then its payoff at the next outcome by blocking with the single worker ws is given by
ul+1
f = ulf + 1

2(a−ulf ) and ws’s payoff is ul+1
ws = (1− a) + 1

2(a−ulf ), i.e., we guarantee the single
worker a minimal payoff (1− a) whenever he blocks with firm f .

Similarly to Example 4, start the sequence with the empty matching (µ1, u1) as the initial
(unstable) outcome. Select worker w1 and let (µ2, u2) be the outcome obtained from (µ1, u1) by
satisfying the blocking pair (w1, f), such that µ2(f) = w1, u

2
w1 = 1− 1

2a, u
2
w2 = 0, and u2

f = 1
2a.

Continue the construction of the sequence similarly as in the previous example. The following
table summarizes the payoffs along the sequence.

l 1 2 3 4 ... k

ulw1 0 1− 1
2a 0 1− 7

8a ...
{

1− ukf if k is even
0 if k is odd

ulw2 0 0 1− 3
4a 0 ...

{
0 if k is even
1− ukf if k is odd

ulf 0 1
2a

3
4a

7
8a ... ukf =

∑l−1
i=1(1

2)ia =
(
1− (1

2)l−1
)
a

As in Example 4, f alternates between w1 and w2 as its partner. Since for all l ≥ 1, ulf <
a < 1, the outcome (µl, ul) is never stable. Therefore, the sequence (µ1, u1), (µ2, u2), (µ3, u3), ...
is infinite. Furthermore, and in contrast to Example 4, limk→∞ u

k
f = a < 1 and for workers w

payoffs alternate between 0 and values > (1− a), i.e., the firm’s payoffs converge to an unstable
payoff and workers payoffs do not converge. 4

Note that in Examples 4 and 5, although the payoffs (partially) converge, the matchings
do not converge. Along the blocking path firm f alternates between w1 and w2 as its partner.
Because the path is not finite (and payoffs only converge in the limit, if at all) this oscillation
never stops.

Example 2 is an assignment problem with a finite set of stable outcomes because the set
of stable payoffs is a singleton. Based on this assignment problem, we have constructed in
Examples 4 and 5 infinite sequences of outcomes that either payoff-converge to stability or that
diverge in payoffs. In contrast, the set of stable outcomes in Example 1 is infinite because the
set of stable payoffs is infinite. Based on the assignment problem described in Example 1 we
have shown in Example 3 that a blocking path to stability might exist.
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A crucial difference between the assignments problems depicted in Example 1 and Example
2 relates to the characteristics of the stable payoffs. In Example 1, there is an infinite number
of interior stable outcomes, i.e., stable outcomes where all the agents obtain strictly positive
payoffs, and two extreme outcomes where one of the two matched agents obtains a zero payoff.
In Example 2, all the workers obtain zero payoffs at a stable outcome irrespective of which one
of the two workers is matched with the firm. Since we require any two blocking agents to be
strictly better off when satisfying a blocking pair, stability in Example 4 (based on Example 2)
will never be reached because it is impossible to satisfy a blocking pair formed by a single worker
and the firm with stable payoffs that make both of them strictly better off.7 We show that for
an assignment problem the existence of a stable outcome that is “away from zero” (zero being
the normalized reservation value) for matched agents is a necessary and sufficient condition to
guarantee the existence of a blocking path to stability. We formalize this condition as follows.

Assumption 1. Assignment problem (W,F, π) satisfies Assumption 1 if there exists a stable
outcome (µ∗, u∗) such that for each agent i ∈ W ∪ F who is not single, i.e., µ∗(i) 6= i, we have
u∗i > 0.

Next, we show that Assumption 1 is sufficient for the existence of blocking paths to stability.

Theorem 1 (Paths to Stability). Let (W,F, π) be an assignment problem satisfying Assump-
tion 1 and (µ, u) an arbitrary outcome for (W,F, π). Then, there exists a blocking path
(µ1, u1), ..., (µk, uk) such that (µ, u) = (µ1, u1) and (µk, uk) is stable.

The proof of the theorem proceeds in three steps. In Step 1 we first unmatch as many couples
as possible via blocking, i.e., we maximize the number of single agents. In some cases, using
Assumption 1, we might already be able to rematch single agents via blocking to obtain a stable
outcome. If this is not immediately possible, in Step 2 we then apply a stabilization process that
deals with non optimal matchings, unstable payoffs, and single agents who cannot immediately
be matched via blocking because they would have to receive a stable zero payoff to reach stability
directly, which is not possible according to our strict blocking norm (and hence, some extra steps
are needed to move the process towards a positive stable payoff for such agents). We prove that
the stabilization process ends in finitely many steps by induction. In the final Step 3, using
Assumption 1, we complete the construction of the blocking path by matching remaining single
agents with optimal partners. The result is a stable outcome. Throughout the proof, a stable
outcome (µ∗, u∗) as specified in Assumption 1 serves as a target and outcomes along the blocking
path are getting closer to the target outcome along the way. We prove Theorem 1 in Appendix A
and provide an example that illustrates the paths to stability construction in Appendix B.

Remark 2 (Induced and Related Results).
Chen et al. (2012, Theorem 1) and Nax et al. (2013, Theorem 1) both analyze a similar de-
centralized (weak) blocking process for assignment problems with discrete side payments. They
construct a blocking path to stability and show that a decentralized blocking process converges
to stability with probability one.

7We shall discuss at the end of the paper the case of weak blocking, i.e., the relaxation of the strict blocking
norm that only requires that both blocking agents are weakly better off and at least one of them strictly better
off.
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We show in Section 4.2 that in our continuous model, we cannot obtain a similar probabilistic
interpretation of our paths to stability result. A probabilistic result however can easily be
restored if we use the notion of ε-stability we discuss in Section 4.2.

In Section 4.3 we discuss how our result does imply the paths to stability results established
by Chen et al. (2012) and Nax et al. (2013) but with a different proof technique that also has to
address complications due to the use of our strict instead of the weak blocking norm. Our proof
technique involves a stable target outcome instead of using the polarization that is inherent in
the core for two-sided assignment problems.

This proof technique makes it possible to extend our result (Theorem 1) to one-sided assign-
ment problems. Biró et al. (2013, Theorem 1) analyze decentralized (weak) blocking process for
one-sided assignment problems and we discuss the relationship between their paths to stability
result and ours in Section 4.3. Related to the target proof technique we and Biró et al. (2013)
use, in Section 4.4 we discuss the new idea of using median stable target outcomes in a centralized
stabilization process in order to implement a compromise in the final stable outcome. 4

One distinguishing difference between our results (Theorems 1 and 2) and the results by Biró
et al. (2013, Theorem 1), Chen et al. (2012, Theorem 1), and Nax et al. (2013, Theorem 1) is
that with the strict blocking norm and continuity, paths to stability do not always exist (they
only do exist if and only if Assumption 1 is satisfied).

Theorem 2 (No Path to Stability). Let (W,F, π) be an assignment problem violating Assump-
tion 1. Then, there exists an outcome (µ, u) for (W,F, π) such that no blocking path leads to
stability.

We prove Theorem 2 in Appendix A.

Table 1: Survey of the existence of paths to stability results for different assignment model spec-
ifications. Note that a third dimension we could add is if results also apply to the corresponding
one-sided model extensions (Biró et al. (2013) prove their results for one-sided assignment prob-
lems and we can extend our results to one-sided assignments problems as well).

assignment problems weak blocking strict blocking
discrete Chen et al. (2012) & Nax et al. (2013) by Theorem 1 (see Section 4.3)
continuous Biró et al. (2013) Theorems 1 & 2 (iff Assumption 1)

4 Discussion

4.1 Fair Blocking Paths

We have targeted throughout the proof of Theorem 1 an outcome (µ∗, u∗) “away from zero” for
matched agents (according to Assumption 1). In some steps of our blocking path we had to
align payoffs according to the stable payoff vector u∗; in other words, at times we have used very
specific payoff splits for certain blocking pairs. It is a natural question to ask if our result could
also be obtained via an equal division blocking dynamics (as used in Example 4).
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We call a fair blocking path a sequence of outcomes, such that each outcome is obtained from
the previous one by satisfying a blocking pair with the additional condition that the blocking
agents equally split the blocking surplus. The following example shows that a fair blocking path
might not lead to stability.

Example 6 (A fair blocking path with an infinite sequence of outcomes). Let (W,F, π)
be an assignment problem given by W = {w1, w2}, F = {f1, f2}, and for all (w, f) ∈ W × F ,
π(w, f) = 1. A stable outcome (µ, u) for (W,F, π) matches each worker with any of the two
firms and both workers (respectively both firms) obtain the same payoffs, i.e., stable payoffs must
be aligned. Formally, the set of stable outcomes is S(W,F, π) := {(µ, u) | [(w1, f1), (w2, f2) ∈
µ or (w1, f2), (w2, f1) ∈ µ] and [uw1 = uw2 and uf1 = uf2 = 1 − uw1 ]}. Any outcome (µ, u)
at which the two workers obtain different payoffs is not stable because then there is always a
worker wi, i ∈ {1, 2}, with uwi < uwj , i 6= j, such that uµ(wj) < uµ(wi) implies uwi + uµ(wj) <
1 = uwi + uµ(wi). Thus, the worker who gets the smallest payoff always forms a blocking pair
with the firm that is matched with the other worker.

We show that no fair blocking sequence (µ1, u1), (µ2, u2), (µ3, u3), ... can converge to stability.
Start the sequence with outcome (µ1, u1) where worker w1 is matched with firm f1 and has a
payoff u1

w1 = a /∈ {0, 1
2 , 1}, and worker w2 and firm f2 are single and obtain zero payoffs.

Graphically, (µ1, u1) can be represented as follows:

-�w1 f1

w2. .f2

a 1− a

(µ1, u1)

There are three blocking pairs for (µ1, u1): (w1, f2), (w2, f1), and (w2, f2), such that (µ2, u2) is
obtained from (µ1, u1) by satisfying a blocking pair (w, f) ∈ {(w1, f2), (w2, f1), (w2, f2)}. We
show that irrespective of which blocking pair is satisfied, the next outcome (µ2, u2) has the same
unstable structure as outcome (µ1, u1), etc. We consider two cases: either (w, f) involves a
single agent and a matched agent, i.e., (w, f) ∈ {(w1, f2), (w2, f1)}, or (w, f) involves two single
agents, i.e., (w, f) = (w2, f2).
Case 1 ((w, f) ∈ {(w1, f2), (w2, f1)}). The blocking surplus that w and f create is

bs(u1; (w, f)) =
{

1− a if (w, f) = (w1, f2)
a if (w, f) = (w2, f1)

Since a /∈ {0, 1}, the blocking surplus bs(u1; (w, f)) is smaller than 1 irrespective of which
blocking pair (w1, f2) or (w2, f1) is satisfied. Hence, at outcome (µ2, u2), w and f are matched,
agent i ∈ {w, f} who was single at µ1 obtains a payoff u2

i = 1
2bs(u

1; (w, f)) < 1
2 , his partner

µ2(i) obtains a payoff u2
µ2(i) = 1− u2

i >
1
2 , and their former partners µ1(w) and µ1(f) are single

and obtain zero payoffs. Note that outcome (µ2, u2) has the same structure as outcome (µ1, u1),
that is two agents w and f are matched and both of them obtain payoffs u2

w, u
2
f /∈ {0, 1

2 , 1}, and
the two remaining agents are single and obtain zero payoffs.
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Case 2 ((w, f) = (w2, f2)). Since both w2 and f2 obtain zero payoffs at (µ1, u1) the blocking
surplus they create is

bs(u1; (w2, f2)) = 1

Satisfying this blocking pair leads to outcome (µ2, u2) where w1 and f1 are still matched with
each other and obtain the same payoffs as before, and w2 and f2 are matched with each other
and obtain payoffs u2

w2 = u2
f2

= 1
2 . Graphically, (µ2, u2) can be represented as follows:

-�

-�

w1 f1

w2 f2

a 1− a

1
2

1
2

(µ2, u2)

Since a /∈ {0, 1
2 , 1} by assumption, either w1 or f1 obtains a payoffs smaller than 1

2 at (µ2, u2).
Let i ∈ {w1, f1} be the agent whose payoff at (µ2, u2) is smaller than 1

2 . Then there exists a
matched agent j ∈ {w2, f2}, such that (i, j) is a blocking pair for (µ2, u2) with the blocking
surplus

bs(u2; (i, j)) < 1.

Note that (i, j) is the unique blocking pair for (µ2, u2). Satisfy this blocking pair with equal
surplus splitting to obtain the next outcome (µ3, u3). At outcome (µ3, u3), j obtains a payoff
u3
j = 1

2 + 1
2bs(u

2; (i, j)) /∈ {0, 1
2 , 1}, which implies u3

i /∈ {0, 1
2 , 1}, and the two remaining agents

are single and obtain zero payoffs. Hence, outcome (µ3, u3) has the same structure as outcome
(µ1, u1).

Hence, in this example, any blocking path that starts from the unstable outcome (µ1, u1)
at some point always reaches an unstable outcome that has the same structure as outcome
(µ1, u1). Hence, the sequence (µ1, u1), (µ2, u2), (µ3, u3), ... is infinite and a fair blocking path in
this example cannot lead to stability. 4

We have assumed in Example 6 that u1
w1 /∈ {0, 1

2 , 1} and we have constructed an infinite
sequence of outcomes. Of course, a fair blocking path might lead to stability in finitely many
steps in some instances. Consider the following sequence: let (µ1, u1) be an outcome such that
worker w1 is matched with firm f1 and both of them have payoffs u1

w1 = u1
f1

= 1
2 , and worker w2

and firm f2 are single and obtain zero payoffs. Suppose the next outcome (µ2, u2) is obtained
from (µ1, u1) by satisfying the blocking pair (w2, f2) with equal surplus splitting. At outcome
(µ2, u2), worker w1 is matched with firm f1, worker w2 is matched with firm f2 and all the agents
obtain stable payoffs u2

i = 1
2 , i ∈W ∪F . Hence, the fair blocking path (µ1, u1), (µ2, u2) leads to

stability in one step.

4.2 Probabilistic Interpretation and ε-Stability

A central question addressed by Roth and Vande Vate (1990), Diamantoudi et al. (2004), Chen
et al. (2012, Theorem 1), and Nax et al. (2013, Theorem 1) is whether a decentralized pro-
cess where each blocking pair (and each possible blocking surplus split in the latter models) is
randomly selected with a strictly positive probability converges to a stable outcome. All four
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papers answer this question in the affirmative. In each of these papers the authors construct a
blocking path that leads to stability in finitely many steps. Since each blocking pair is selected
with strictly positive probability in a decentralized process, the blocking path they construct
converges to stability with probability one. However, the fact that each blocking pair is selected
with positive probability relies precisely on the underlying assumptions of the models. In the
marriage problem of Roth and Vande Vate (1990) and the roommate problem of Diamantoudi
et al. (2004) agents have ordinal preferences over the (finite) set of agents with whom they can
form a blocking pair. In the assignment problem of Chen et al. (2012) and Nax et al. (2013) side
payments are discrete, such that the number of possible divisions of a blocking surplus is finite.
Those assumptions imply that for each outcome there is always a finite number of blocking pairs
(including no blocking pairs if the outcome is stable).

In our assignment problem with continuous side payments two blocking agents can split
the blocking surplus in infinitely many ways. We replace the assumption of the above discrete
models that any blocking pair and surplus split is chosen with a positive probability with the
assumption that blocking pairs and surplus splits are based on a probability distribution with
full support over all blocking pairs and surplus splits. Now, the probabilistic interpretation based
on the existence of a path to stability turns out to be problematic in our model if in some step of
our blocking path constructed stable payoffs have to be aligned (see our next example for such
a situation). More precisely, if for some blocking pair there is a unique division of a blocking
surplus that leads to stability, then, given the continuity of payoffs, the point probability that
such a blocking pair is selected is zero. Hence, in our model, we cannot deduct a probabilistic
convergence to stability result from the existence of a blocking path to stability. The following
example illustrates the situation.

Example 7 (Probabilistic Interpretation). Consider the assignment problem (W,F, π) in
Example 6: W = {w1, w2}, F = {f1, f2}, and, for all (w, f) ∈ W × F , π(w, f) = 1. Recall that
at any stable outcome the workers (the firms) must obtain the same stable payoffs, i.e., stable
payoffs are aligned. Consider the following unstable outcome (µ, u): worker w1 and firm f1 are
matched, w1 obtains a payoff uw1 = a ∈ [0, 1], f1 obtains a payoff uf1 = 1 − a ∈ [0, 1], and the
remaining agents w2 and f2 are single and obtain zero payoffs. Graphically, (µ, u) is represented
as follows:

-�w1 f1

w2. .f2

a 1− a

(µ1, u1)

The set of agents that form couples is C(µ) = {w1, f1}, w1 and f1 are optimal partners and
receive stable payoffs, such that w1 and f1 are matched according to the stable outcome (µ∗, u∗)
where

(i) µ∗ = (w1, f1), (w2, f2) is an optimal matching, and

(ii) u∗ is a stable payoff vector, i.e., a ∈ (0, 1), [for all i ∈ W , u∗i = a], and [for all j ∈ F ,
u∗j = 1− a].
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Hence, following our blocking path (Step 3, Matching completion process) it suffices to match
worker w2 with firm f2 with stable payoffs uw2 = a and uf2 = 1 − a in order to reach the
stable outcome (µ∗, u∗) in one step. However, since payoffs are continuous, the probability that
the blocking pair (w2, f2) is satisfied with exactly those stable payoffs is zero. Similarly as in
Example 6 one can show that any path to stability would require such a “zero probability”
alignment step. Hence, probabilistically, convergence to stability in a decentralized process
cannot be obtained. 4

Consider now the following notion of ε-stability. Let (W,F, π) be an assignment problem
and u∗ a stable payoff vector for (W,F, π). An outcome (µ, u) is ε-stable if µ is an optimal
matching and all agents obtain payoffs in an ε-neighborhood of a stable payoff vector u∗, i.e.,
u is an ε-stable payoff vector if there exists a real number ε > 0 such that, for all i ∈ W ∪ F ,
|u∗i − ui| < ε.

Suppose that along our blocking path an outcome (µl+1, ul+1) is obtained from outcome
(µl, ul) by satisfying a blocking pair (w, f) with the condition that ul+1

w = u∗w and ul+1
f = u∗f ,

i.e., payoffs must be aligned at the stable payoff vector u∗. We know that such a blocking
pair will never be selected with positive probability in a decentralized process. However, if for
i ∈ {w, f} we consider the payoff ul+1

i ∈ (u∗i − ε, u∗i + ε) to be ε-stable, then a blocking pair
(w, f) with payoffs ul+1

w ∈ (u∗w − ε, u∗w + ε) and ul+1
f ∈ (u∗f − ε, u∗f + ε) is selected with positive

probability in a decentralized process. Hence, a decentralized process will converge to ε-stability
with probability one. Furthermore, Theorem 1 induces a paths to ε-stability result without
requiring Assumption 1.

Corollary 1 (ε-Stability). Let (W,F, π) be an assignment problem and (µ, u) an arbitrary out-
come for (W,F, π). Then, there exists a blocking path (µ1, u1), ..., (µk, uk) such that (µ, u) =
(µ1, u1) and (µk, uk) is ε-stable. Furthermore, a randomly created path (µ1, u1), (µ2, u2), ... con-
verges with probability one to an ε-stable outcome.

4.3 A Discussion of Three Closely Related Papers

Discretized Two-Sided Assignment with Weak Blocking: Chen et al. (2012)
and Nax et al. (2013)

Our main result (Theorem 1) is related to Chen et al. (2012, Theorem 1) and Nax et al. (2013,
Theorem 1) in that it implies the paths to stability results that they also obtain for their
assignment model specifications.8 Since both these papers obtain the same paths to stability
result with its associated probabilistic interpretation (see our discussion in Section 4.2) using
essentially the same proof technique, we explain the difference between their results and ours
by referring to Chen et al. (2012).

Chen et al. (2012) study a labor market with finitely many heterogeneous workers and firms
to illustrate the blocking dynamics in assignment problems. They prove the existence of blocking

8The existence of Chen et al.’s (2012) result was known to us in March 2011. Our results were publicly defended
and published (Payot, 2011) in July 2011. We became aware of the result of Nax et al. (2013) only in 2012 (the
earliest working paper version we saw is dated June 2012)
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paths to stability for assignment problems, as we do. They make two main assumptions that
make their model different from our model. First, Chen et al. (2012) consider an assignment
problem with discrete side payments. Second, they use a weak blocking norm: two agents form
a blocking pair if satisfying this blocking pair makes at least one of them strictly better off.
As Chen et al. (2012) we also study an assignment problem with side payments. However, our
model differs from theirs with respect to two dimensions. First, we consider an assignment
problem with continuous side payments. Second, our strict blocking norm requires that two
agents form a blocking pair if and only if satisfying this blocking pair makes both agents strictly
better off. In contrast to Chen et al. (2012) we have shown that with our assumptions a blocking
path to stability does not always exists in the assignment problem. We identified a necessary
and sufficient condition to guarantee the existence of blocking paths to stability. As discussed
in Section 4.2, the probabilistic interpretation of the path to stability result that Chen et al.
(2012, Theorem 1) obtain does not apply to our continuous assignment model.

Although our results and the results of Chen et al. (2012) are closely related, we use a
different proof technique. Chen et al. (2012) essentially adapt the proof strategy of Roth and
Vande Vate (1990) to assignment problems with discrete side payments. They construct an
algorithm that targets a side optimal outcome. Each time an agent, say agent i, is selected to
block an outcome, he will choose to block with his most preferred partner, i.e., the blocking
partner with whom he can generate the largest surplus, and offers this best blocking partner the
smallest payoff consistent with the incentives to block, such that i obtains in the next outcome
the largest payoff while forming a blocking pair. Hence, given that payoffs are polarized in the
core, the payoffs of one side of the market monotonically increase whereas the payoffs of the
other side monotonically decrease along the blocking path. Our proof is more akin to the one
used by Diamantoudi et al. (2004) in the sense that our algorithm (as well as theirs) uses a
target stable outcome to avoid cycling.

Despite the fact that our proof technique differs from the proof in Chen et al. (2012), our
proof works well for their environment. To see how our blocking path construction works for
assignment problems with discrete side payments is straight forward. If payoffs were discretized
in our model, then any blocking surplus can only be divided in finitely many ways; switching from
continuous to discrete payoffs in our model has the simplifying effect to reduce the number of
blocking possibilities to a finite number. When applying our proof construction to a discretized
assignment problem, our blocking path will still lead to stability but in possibly fewer steps (the
reason why we then also can drop our necessary and sufficient assumption is that with discrete
payoffs the convergence problems we indicate in Section 3 cannot occur). Hence, our result
extends that of Chen et al. (2012) to assignment problems with continuous side payments.

Chen et al. (2012) allow weak blocking pairs to be formed. In contrast, we focused on strict
payoff improvement for a blocking pair to be satisfied. Therefore, we need to target stable payoffs
away from zero (and assume their existence by our necessary and sufficient Assumption 1) to
ensure that agents that obtain zero payoffs at some point and are matched at a stable outcome
have a clear incentive to form a blocking pair by obtaining a strictly higher payoff. This crucial
situation of having to match zero payoff stable partners may appear multiple times along our
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blocking path.9

In our model, allowing for weak blocking pairs would simply make Assumption 1 unnecessary
because then it would always be possible to satisfy a blocking pair of optimal partners with one
of them being single even though the single agent obtains zero payoff at a stable outcome. For
instance, recall that in Example 4 we constructed an infinite sequence of outcomes that converges
to stability. The infiniteness of the sequence is precisely due to the fact that at a stable outcome
the worker who is matched obtains a zero payoff. Thus, in this example a blocking path would
exist under the assumption of weak blocking pairs.

Continuous One-Sided Assignment with Weak Blocking: Biró et al. (2013)

Biró et al. (2013) establish the existence of blocking paths to stability for one-sided assignment
problems using the weak blocking norm. Hence, part of their model is more general than ours
because they fully work out the one-sided assignment setting (we only remark that our proof
technique can easily be used in a corresponding one-sided setting) and part of our model is more
general since we use the more stringent strict blocking norm. Hence, our results are very close,
but somewhat incomparable (in addition to being independently obtained).

Note that using a proof technique with a target stable outcome is absolutely necessary for
one-sided assignment problems (for one-sided assignment problems the set of stable outcomes
may be empty and if it is nonempty, then it does not need to form a complete lattice with
two extreme points that reflect the polarization between both sides of the assignment problem).
However, in spite of being a more general proof technique (since it also applies to one-sided
assignment problems), the target outcome proof technique comes at the price of a less intuitive
myopic blocking behavior along the constructed blocking path because at times blocking payoffs
have to be aligned according to the stable target payoffs. In contrast, the classical two-sided proof
technique used by Chen et al. (2012) and Nax et al. (2013) requires an actively blocking agent to
find a blocking partner with the highest blocking surplus and then extract the highest possible
blocking payoff from this blocking partner (with the weak blocking notion this corresponds to
the active blocking partner taking the whole blocking surplus – this extreme blocking surplus
extraction is not possible under the strict blocking norm that we use in contrast to the other
articles we have been discussing in this section).

4.4 Median Stable Target Outcomes

In the previous section we have discussed that the classical “greedy” two-sided proof employed
in Chen et al. (2012) and Nax et al. (2013) needs to be replaced by a target outcome proof in

9First, in Cases 2.2 and 3.2 within Step 2 (Stabilization Process) we have defined a short blocking sequence
(2 steps) in order to rematch two optimal partners according to our stable target payoff vector. In the second
phase of this short blocking sequence, we rematch one agent who forms a couple (but not with an optimal
partner) with his optimal partner who is single and obtains zero payoff. Thus, without the weak blocking
assumption, this rematching step is feasible only if a stable payoff away from zero exists (Assumption 1). Second,
in Step 3 (Matching Completion Process) we complete the blocking path by matching single agents who are
optimal partners. Given that all single agents obtain zero payoffs, Assumption 1 is needed in order to ensure a
strict payoff improvement for each blocking agent.
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our context because we use the strict blocking norm (another reason would be the consideration
of the one-sided version of our model). Here we argue that this target method can be used in
a centralized assignment market to stabilize an unstable outcome using a “compromise” target
outcome. Recall that for two-sided assignment problems two extreme stable payoff vectors (and
associated outcomes) exist: the worker-optimal stable payoff vector and the firm-optimal stable
payoff vector. These are the stable payoff vectors that are most unequal within the set of
stable payoff vectors. Schwarz and Yenmez (2011) define the median stable payoff vector (and
associated outcomes) as a compromise solution and prove that they are well defined and exist.

Assume that in a centralized labor market we detect that current payoffs are not stable. A
centralized adjustment process could then use the median stable payoff vector in our paths to
stability algorithm to move to a stable outcome (and by doing so, the originally unstable payoffs,
in the stabilization process, would be moved closer to the median stable payoffs). The rational
behind such a centralized stabilization procedure would then be that the resulting outcome could
be obtained via decentralized blocking that targets a compromise stable outcome for the current
situation.

4.5 Concluding Remarks

We have studied two-sided one-to-one matching problems with continuous side payments. We
have considered the existence of blocking paths to stability for such assignment problems under
the strict blocking norm. In contrast to weak blocking paths results by Biró et al. (2013), Chen
et al. (2012), and Nax et al. (2013), the existence of a blocking path to stability cannot always be
guaranteed. We identified a necessary and sufficient condition (Assumption 1) for the existence
of a blocking path to stability.

With Assumption 1, we distinguish between two types of stable outcomes for any given
assignment problem: stable outcomes that involve matched agents with zero payoffs versus
those stable outcomes where all matched agents receive strictly positive payoffs (recall that the
role of zero here is that of an agent’s reservation value in our normalized setup). We find that
if stable outcomes are exclusively of the first type, then no path to stability exists (Theorem 2),
while the existence of a stable outcome of the second type guarantees the existence of a path to
stability (Theorem 1). Even when a path to stability is guaranteed to exist, our results show that
finding or constructing such a path might not be trivial (the Proof of Theorem 1 demonstrates
that the path construction could be rather involved and requires the use of a target stable
outcome satisfying Assumption 1). Moreover, with examples such as Example 6 we show that
an intuitively fair blocking dynamics might never converge to a stable outcome. These results
seem to be bad news for stability as the result of our (myopic) decentralized process. However,
we also show that if small deviations from stability are acceptable (i.e., ε-stability), then a
randomly created path will converges with probability one to an ε-stable outcome (Corollary 1).
Furthermore, our proof technique has the potential to be used in a centralized market in which
a central planner may deliberately choose a specific stable target outcome, e.g., a median stable
outcome, for the stabilization process described in the Proof of Theorem 1.

With suitable modifications of our model (i.e., allowing for weak blocking or specifying a
discrete payoff structure), our results imply the results of Chen et al. (2012) and Nax et al.
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(2013). However, the converse is not true: modifying their model to coincide with ours (i.e.,
imposing strict blocking and allowing continuous transfers) would not allow them to easily adapt
their very different proofs to obtain our results. Our proof technique is somewhat similar to
that of Biró et al. (2013). The main difference with Biró et al. (2013) is that we have to deal
with the more stringent requirement of strict blocking, which is the reason why in our model a
necessary and sufficient condition is added to obtain the existence of paths to stability. Even
though we formulate our model as a two-sided model, our proof technique does not depend on
the two-sidedness of the market and hence we could easily obtain corresponding results for a
one-sided model à la Biró et al. (2013).

A Appendix: Proofs

Before we start the proof of Theorem 1 we introduce some notion concerning the reduction of
matchings, payoff vectors, and outcomes. Let (W,F, π) be an assignment problem and (µ, u)
an outcome for it. Recall that we denote the set of agents that form couples at matching µ by
C(µ) := {i ∈ W ∪ F | µ(i) 6= i}. Then, by µ|C(µ) we denote the reduction of matching µ to
the set of agents C(µ); formally, µ|C(µ) ∈ M (W ∩ C(µ), F ∩ C(µ)) such that for all i ∈ C(µ),
µ|C(µ)(i) := µ(i). Similarly, by u|C(µ) we denote the reduction of payoff vector u to the set of
agents C(µ); formally, u|C(µ) ∈ R|C(µ)| such that u|C(µ) := (ui)i∈C(µ). Finally, (µ, u)|C(µ) =
(µ|C(µ), u|C(µ)) is the reduction of outcome (µ, u) to the set of agents C(µ). We say that the
reduced outcome (µ, u)|C(µ) is stable if

(a) for all i ∈ C(µ), ui ≥ 0 and

(b) for all (w, f) ∈ (W ∩ C(µ))× (F ∩ C(µ)), uw + uf ≥ π(w, f).

Instead of saying that the reduced outcome (µ, u)|C(µ) is stable, we will also use the equivalent
formulation that outcome (µ, u) is stable within the set C(µ).

Note that whenever we use the generic notation (i, j) for a pair, then (i, j) ∈ W × F or
i = j ∈ W ∪ F are both possible. On a few occasions in the sequel we will also use the specific
notation 〈i, j〉 when it is clear that either (i, j) ∈ W × F or (j, i) ∈ W × F , but it is not
important which is the case. With some abuse of notation we will not adjust the notation for
the corresponding value π(i, j) agents i and j create.

Proof of Theorem 1.
Let (W,F, π) be an assignment problem satisfying Assumption 1 and (µ, u) an arbitrary outcome
for (W,F, π). By Assumption 1, there exists a stable outcome (µ∗, u∗) such that for each agent
i ∈W ∪ F who is not single, i.e., µ∗(i) 6= i, we have

u∗i > 0. (*)
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Step 1: Unmatch Process

We first unmatch as many couples as possible via blocking, i.e., we first maximize the number
of single agents by matching blocking pairs (w, f) such that µ(w) ∈ F and µ(f) ∈ W .10 We
construct the first part of our blocking path (µ, u) = (µ1, u1), (µ2, u2), ... as follows.

Step 1.l. For all l ≥ 1, if there exists a blocking pair (wl, fl) for (µl, ul) such that wl and fl are
not single at µl, i.e., wl, fl ∈ C(µl),11 then satisfy this blocking pair to obtain (µl+1, ul+1). Note
that the new set of agents that form couples C(µl+1) = C(µl) \ {µl(wl), µl(fl)} contains fewer
agents: |C(µl+1)| = |C(µl)| − 2.

Since at each Step 1.l (l ≥ 1) the number of agents that form couples is reduced by 2, the
unmatch process reaches an outcome (µa, ua) (a ≥ 1) such that (µa, ua) is stable within the set
C(µa) in finitely many steps. The unmatch process (if starting from a non-empty matching)
generates an outcome (µa, ua) with at least one couple and C(µa) 6= ∅.

After Step 1, we distinguish three cases for outcome (µa, ua). The first one, Case (*), allows
us to easily complete our blocking path using the stable target outcome (µ∗, u∗).

Case (*). There exists some stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µa) = (µa, ua)|C(µa) and
for all i ∈ C(µ̃) \ C(µa), ũi > 0. Then, set (µc, uc) := (µa, ua) and go to Step 3, where we
complete our blocking path to stability by matching single agents in S(µc) according to (µ̃, ũ).

If outcome (µa, ua) is not in Case (*), then we will apply Step 2 in order to appropriately
stabilize the outcome through blocking. We distinguish two remaining cases for outcome (µa, ua).
First, Case (**) deals with boundary cases caused by agents who receive zero stable payoffs.
Second, Case (***) deals with “classical” instability caused by non-optimal matching or by
unstable payoffs.

Case (**). There exists some stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µa) = (µa, ua)|C(µa) and
not Case (*). This implies that for some j ∈ C(µ̃) \ C(µa), ũj = 0. If C(µa) contains only one
couple, then go to Step 2 (Case 2.2). If C(µa) contains more than one couple, then go to Step 2
(Case 3.2). The reason why we might not be able to directly proceed with the completion of our
blocking path by going to Step 3 is that it might require to match two singles such that one of
them receives a zero payoff.12 In the sequel, the payoff stabilization parts of Step 2 (Cases 2.2
and 3.2) will also deal with problematic zero payoffs.

Case (***). There does not exist any stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µa) =
(µa, ua)|C(µa). Then, the agents in C(µa) are not matched according to an optimal match-
ing or they do not receive stable payoffs. We prove in Step 2 that then there exists a blocking
path that “stabilizes” the set of agents that form couples, i.e., for the resulting outcome (µc, uc)

10Had we modeled blocking paths to contain individually irrational outcomes and to allow singleton blockings,
then we would in this step also unmatch any agent who receives a negative payoff at the initial outcome (µ, u).

11By (i) in the definition of an outcome, µl(wl) 6= fl.
12An example of such a situation is: W = {w1, w2}, F = {f1, f2}, π(wi, fj) = 1 for all i, j ∈ {1, 2}, (µa, ua)

such that C(µa) = {w1, f1}, and ua such that uaw1 = 1 and uaw2 = uaf1 = uaf2 = 0. Proceeding as in the later
Step 3 would require that w2 and f2 match with a zero payoff for f2; this would not be a strict blocking pair.
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there exists some stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µc) = (µc, uc)|C(µc) and such that we
can then complete our blocking path to stability by matching single agents in S(µc) in Step 3.
The next step will use an induction argument to construct an outcome (µc, uc) that belongs to
Case (*).

Step 2: Stabilization Process

We continue our blocking path (µa, ua), (µa+1, ua+1), ... with the aim to stabilize the set of agents
that form couples. Throughout this step, we use a stable outcome (µ∗, u∗) satisfying inequality
(*) for agents matched at µ∗. Note that whenever we refer to (µ∗, u∗) (and inequality (*)) we
are applying Assumption 1.

We denote the number of couples at µa by t = |C(µa)|
2 and consider the cases t = 0, t = 1,

and t > 1. Note that strictly speaking, we could use the case t = 0 as our induction basis
for the induction step t > 0 (instead of using t = 1 and t > 1). We explicitly add the case
t = 1 for didactic reasons because some of the proof steps are more elementary and hence a
good preparation for following the steps for t > 1. (Essentially, the following Case 2 could be
omitted.)
Case 1 (t = 0). If t = 0, then C(µa) = ∅ and (µa, ua) = (µ, u).13 Hence, W ∪F = S(µa)
and for all i ∈ W ∪F , uai = 0, i.e., all agents are single and receive their reservation value.
We set (µc, uc) := (µa, ua) and go to Step 3, where we complete our blocking path to
stability by matching single agents in S(µc) according to (µ∗, u∗) (using (µ̃, ũ) := (µ∗, u∗)
in Step 3).
Case 2 (t = 1). If t = 1, then C(µa) = {w, f} and (w, f) ∈ µa is the only couple at µa.
Since there does not exist any stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µa) = (µa, ua)|C(µa)
as in Case (*) one of the following properties holds:
(2.1) worker w and firm f are not optimal partners, i.e., there does not exist an optimal

matching µ̃ such that (w, f) ∈ µ̃ or

(2.2) either Case (**) or one of the agents i ∈ {w, f} does not receive a stable payoff, i.e.,
uai /∈ [uai , uai ].

Case 2.1 (w and f are not optimal partners). Consider the optimal target matching µ∗.
Consider the set {w, µ∗(f), f, µ∗(w)} (in Case 3.1 we will denote the corresponding set by
C(µa)∪S∗(µa)). If µ∗(w) = w and µ∗(f) = f , then, π(w, f) = 0, which would mean that
changing µ∗ by matching w with f would also yield an optimal matching; contradicting
the fact that w and f are not optimal partners. Hence, |{w, µ∗(f), f, µ∗(w)}| ∈ {3, 4}.

Let µ̄ be the matching that is obtained from the optimal target matching µ∗ by re-
matching agents in {w, µ∗(f), f, µ∗(w)} according to matching µa, i.e.,

µ̄(i) =

µa(i) if i ∈ {w, µ∗(f), f, µ∗(w)}
µ∗(i) otherwise.

(2.1)

13Recall that the unmatch process generates an outcome (µa, ua) with at least one couple.
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Since w and f are not optimal partners, matching µ̄ is not optimal. Hence,∑
(i,j)∈µ̄

π(i, j) <
∑

(i,j)∈µ∗
π(i, j). (2.2)

First, assume that |{w, µ∗(f), f, µ∗(w)}| = 4, i.e., µ∗(w) 6= w and µ∗(f) 6= f . Hence,
(w, f), (µ∗(w), µ∗(w)), (µ∗(f), µ∗(f)) ∈ µ̄. By construction (2.1) of µ̄, matchings µ̄ and µ∗
coincide for all agents i /∈ {w, f, µ∗(w), µ∗f}). Thus,

π(w, f)︸ ︷︷ ︸
uaw+ua

f

+π(µ∗(w), µ∗(w))︸ ︷︷ ︸
=0=ua

µ∗(w)

+ π(µ∗(f), µ∗(f))︸ ︷︷ ︸
=0=ua

µ∗(f)

< π(w, µ∗(w)) + π(µ∗(f), f). (2.3)

Hence, (
uaw + uaµ∗(w)

)
+
(
uaµ∗(f) + uaf

)
< π(w, µ∗(w)) + π(µ∗(f), f). (2.4)

Thus, [uaw + uaµ∗(w) < π(w, µ∗(w))] or [uaµ∗(f) + uaf < π(µ∗(f), f)]. Then, (w, µ∗(w)) or
(µ∗(f), f) is a blocking pair of optimal µ∗-partners for outcome (µa, ua).

Next, assume that |{w, µ∗(f), f, µ∗(w)}| = 3 such that µ∗(w) 6= w and µ∗(f) = f .
Thus, (w, f), (µ∗(w), µ∗(w)) ∈ µ̄ and by construction of µ̄ (matchings µ̄ and µ∗ coincide
for all agents i /∈ {w, f, µ∗(w)}),

π(w, f)︸ ︷︷ ︸
uaw+ua

f

+π(µ∗(w), µ∗(w))︸ ︷︷ ︸
=0=ua

µ∗(w)

< π(w, µ∗(w)) + π(f, f). (2.3’)

Hence, (
uaw + uaµ∗(w)

)
+ uaf︸︷︷︸
≥0

< π(w, µ∗(w)) + π(f, f)︸ ︷︷ ︸
=0

. (2.4’)

Thus, [uaw + uaµ∗(w) < π(w, µ∗(w))]. Then, (w, µ∗(w)) is a blocking pair of optimal µ∗-
partners for outcome (µa, ua).

Similarly as above, for |{w, µ∗(f), f, µ∗(w)}| = 3 such that µ∗(w) = w and µ∗(f) 6= f
it follows that (µ∗(f), f) is a blocking pair of optimal µ∗-partners for outcome (µa, ua).

To summarize, we can always identify a blocking pair (w∗, f ∗) ∈ µ∗ such that (w∗, f ∗) ∈
{(w, µ∗(w)), (µ∗(f), f)} for outcome (µa, ua). Let (µa+1, ua+1) be an outcome obtained by
satisfying such a blocking pair (w∗, f ∗) of optimal µ∗-partners w∗, f ∗ ∈ C(µa+1). Note
that |C(µa+1)| = 2.

If (as in Case (*)) there exists some stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µa+1) =
(µa+1, ua+1)|C(µa+1) and for all i ∈ C(µ̃)\C(µa+1), ũi > 0, then set (µc, uc) := (µa+1, ua+1)
and go to Step 3, where we complete our blocking path to stability by matching single
agents in S(µc) according to (µ̃, ũ). Otherwise (as in Cases (**) and (***)) set (µb, ub) :=
(µa+1, ua+1) and continue the blocking path as described next in Case 2.2.
Case 2.2 (optimal partners and either Case (**) or unstable payoffs). If at outcome
(µa, ua) agents w and f are optimal partners, then first set (µb, ub) := (µa, ua). We
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continue the blocking path in this case with (µb, ub) as the initial outcome (note that
(µb, ub) can come either directly from Step 1 or from Case 2.1 within Step 2). Most
arguments for Case (**) and unstable payoff are the same [but whenever needed, we
mark arguments specific to Case (**) in parentheses as illustrated here].

Agents w and f being optimal partners at µb implies that there exists an optimal
matching µ̃∗ such that µ̃∗(w) = f and ubw + ubf = π(w, f). By Lemma 1 (b) and (µ∗, u∗)
being a stable outcome, (µ̃∗, u∗) is also a stable outcome. Hence,

for (w, f) ∈ µb, ubw + ubf = u∗w + u∗f = π(w, f). (2.5)

Note that if ubw = u∗w and ubf = u∗f , then we would be in Case (*) and not have reached
Case 2.2. Hence, either [ubw < u∗w and ubf > u∗f ] or [ubw > u∗w and ubf < u∗f ].

Let ū be the payoff vector that is obtained from the stable target payoff vector u∗ by
replacing the payoffs of worker w and firm f at u∗ with those at ub, i.e.,

ūi =

ubi if i ∈ {w, f}
u∗i otherwise.

(2.6)

[In Case (**), if payoff vector ū is stable, then set (µc, uc) := (µb, ub) and go to Step 3,
where we complete our blocking path to stability by matching single agents in S(µc)
according to (µ̃∗, ū) (using (µ̃, ũ) := (µ̃∗, ū) in Step 3). Otherwise, there is at least one
blocking pair 〈i, j〉 for outcome (µ̃∗, ū).] Since agents w and f are not receiving stable
payoffs at ub, payoff vector ū is also not stable and at least one blocking pair 〈i, j〉 for
outcome (µ̃∗, ū) exists. Since u∗ is a stable payoff vector, by construction (2.6), any
blocking pair for outcome (µ̃∗, ū) involves either worker w or firm f .

Assume that agent i ∈ {w, f} with ubi > u∗i is part of a blocking pair 〈i, j〉 for outcome
(µ̃∗, ū). Then, π(i, j) > ūi + ūj = ubi + u∗j > u∗i + u∗j , contradicting the stability of payoff
vector u∗. Hence, ubi < u∗i for the agent i ∈ {w, f} who participates in blocking pair 〈i, j〉
for outcome (µ̃∗, ū). Note that j ∈ S(µb) and ubj = 0. Thus, π(i, j) > ūi + ūj ≥ ubi + ubj
and 〈i, j〉 is also a blocking pair for outcome (µb, ub).

Satisfy this blocking pair to obtain the next outcome (µb+1, ub+1) with the condition
that ub+1

i ∈ (ubi , u∗i ). (Then, ub+1
j = π(i, j) − ub+1

i > 0.) Recall that {w, f} = {i, µb(i)},
π(i, µb(i)) = u∗i + u∗µb(i), and note that at outcome (µb+1, ub+1) agent i’s previous partner
µb(i) is single and receives ub+1

µb(i) = 0. By construction, ub+1
i < u∗i and ub+1

µb(i) = 0 < u∗µb(i).
Thus, 〈i, µb(i)〉 = (w, f) is a blocking pair for outcome (µb+1, ub+1) that we can satisfy to
obtain outcome (µb+2, ub+2) with the condition that ub+2

w = u∗w and ub+2
f = u∗f .

At outcome (µb+2, ub+2) agents w and f are optimal partners and they obtain stable
payoffs that satisfy Case (*). Set (µc, uc) := (µb+2, ub+2) and go to Step 3, where we
complete our blocking path to stability by matching single agents in S(µc) according to
(µ∗, u∗) (using (µ̃, ũ) := (µ∗, u∗) in Step 3).
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Case 3 (t > 1). At outcome (µa, ua), there are t > 1 couples and agents in C(µa) are not
matched according to a stable outcome as in Case (*). We will use an induction argument
to continue our blocking path (µa, ua), (µa+1, ua+1), ... in order to construct an outcome
(µc, uc) that belongs to Case (*).
Induction Basis (t = 1). For t = 1, we can construct a blocking sequence (µa, ua),
..., (µc, uc) (Case 2) such that the set of agents that form couples are stabilized as in
Case (*), i.e., there exists some stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µc) = (µc, uc)|C(µc)
and for all i ∈ C(µ̃) \ C(µc), ũi > 0.
Induction Hypothesis (t ≥ 1). Assume that for t ≥ 1, we can construct a blocking se-
quence (µa, ua), ..., (µc, uc) such that the set of agents that form couples are stabilized as in
Case (*), i.e., there exists some stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µc) = (µc, uc)|C(µc)
and for all i ∈ C(µ̃) \ C(µc), ũi > 0.
Induction Step (t→ t+1). We now assume that at outcome (µa, ua), there are t+1 > 1
couples and agents in C(µa) are not matched according to a stable outcome as in Case (*).
Since there does not exist any stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µa) = (µa, ua)|C(µa)
and for all i ∈ C(µ̃) \ C(µa), ũi > 0 one of the following holds:

(3.1) at least two agents that form a couple at µa are not optimal partners, i.e., for at
least one couple (w, f) ∈ µa there does not exist an optimal matching µ̃ such that
(w, f) ∈ µ̃ or

(3.2) either Case (**) or there exists an optimal matching µ̃ such that µ̃|C(µa) = µa|C(µa),
but there does not exist a stable payoff vector ũ such that ũ|C(µa) = ua|C(µa).

We now start to stabilize the set of agents that form couples as we did in Case 2. During
this process, we might create blocking pairs that reduce the number of couples. Whenever
this happens, we apply the induction hypothesis to obtain a blocking sequence that results
in an outcome (µc, uc) such that the set of agents that form couples are stabilized as in
Case (*).
Case 3.1 (not all agents in C(µa) have optimal partners). Consider the optimal target
matching µ∗ and denote the set of single agents at µa that at µ∗ are matched to agents
in C(µa) by

S∗(µa) := {i ∈ S(µa) | µ∗(i) ∈ C(µa)}.
Note that each agent i ∈ C(µa) ∪ S∗(µa) has his optimal µ∗-partner in C(µa) ∪ S∗(µa).

Let µ̄ be the matching that is obtained from the optimal target matching µ∗ by re-
matching agents in C(µa) ∪ S∗(µa) according to matching µa, i.e.,

µ̄(i) =

µa(i) if i ∈ C(µa) ∪ S∗(µa)
µ∗(i) otherwise.

(3.1)
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Since some agents that form couples at µa are not optimal partners, matching µ̄ is not
optimal. Hence, ∑

(i,j)∈µ̄
π(i, j) <

∑
(i,j)∈µ∗

π(i, j). (3.2)

By construction (3.1) of µ̄, matchings µ̄ and µ∗ coincide for all agents i /∈ C(µa)∪S∗(µa).
Thus, ∑

(w,f)∈µa
s.t. w,f∈C(µa)

π(w, f)

︸ ︷︷ ︸
L1

+
∑

(i,i)∈µa
s.t. i∈S∗(µa)

π(i, i)

︸ ︷︷ ︸
L2

<
∑

(i,j)∈µ∗
s.t. i,j∈C(µa)∪S∗(µa)

π(i, j)

︸ ︷︷ ︸
R

. (3.3)

Note that

π(i, j) =

uaw + uaf if (i, j) = (w, f) ∈ µa and w, f ∈ C(µa)
uai = 0 if (i, i) ∈ µa and i ∈ S∗(µa).

This implies that we can rewrite L1 as

L1 =
∑

(w,f)∈µa
s.t. w,f∈C(µa)

π(w, f) =
∑

(w,f)∈µa
s.t. w,f∈C(µa)

(uaw + uaf ) =
∑

i∈C(µa)
uai

and L2 as
L2 =

∑
(i,i)∈µa

s.t. i∈S∗(µa)

π(i, i) =
∑

(i,i)∈µa
s.t. i∈S∗(µa)

uai =
∑

i∈S∗(µa)
uai .

Furthermore,

R =
∑

(i,j)∈µ∗
s.t. i,j∈C(µa)∪S∗(µa)

π(i, j) =
∑

(w,f)∈µ∗
s.t. w,f∈C(µa)∪S∗(µa)

π(w, f) +
∑

(i,i)∈µ∗
s.t. i∈C(µa)∪S∗(µa)

π(i, i).

We can now rewrite (3.3) as∑
i∈C(µa)∪S∗(µa)

uai <
∑

(w,f)∈µ∗
s.t. w,f∈C(µa)∪S∗(µa)

π(w, f) +
∑

(i,i)∈µ∗
s.t. i∈C(µa)∪S∗(µa)

π(i, i). (3.4)

Next, we map terms on the left side to terms on the right side of inequality (3.4) as follows
(to be precise, we define a bijection between terms on the left and the right side of the
inequality):

Note that for the terms associated with agents i ∈ C(µa)∪S∗(µa) such that (i, i) ∈ µ∗
we have uai ≥ 0 = π(i, i). Thus, in order for inequality (3.4) to hold, there must exist
agents w∗1, f ∗1 ∈ C(µa) ∪ S∗(µa) such that (w∗1, f ∗1 ) ∈ µ∗ and

uaw∗1 + uaf∗1 < π(w∗1, f ∗1 ).
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Table 2: A bijection between terms on both sides of inequality (3.4).

term on the left side for term on the right side
(uaw + uaf ) (w, f) ∈ µ∗ and w, f ∈ C(µa) ∪ S∗(µa) π(w, f)

uai (i, i) ∈ µ∗ and i ∈ C(µa) ∪ S∗(µa) π(i, i)

Then, (w∗1, f ∗1 ) ∈ µ∗ is a blocking pair of optimal µ∗-partners for outcome (µa, ua). By the
definition of set S∗(µa) it follows that w∗1 ∈ C(µa) or f ∗1 ∈ C(µa).

To summarize, we can always identify a blocking pair (w∗1, f ∗1 ) ∈ µ∗ such that w∗1 ∈
C(µa) or f ∗1 ∈ C(µa) for outcome (µa, ua). Let (µa+1, ua+1) be the outcome obtained
by satisfying such a blocking pair of optimal µ∗-partners (w∗1, f ∗1 ) ∈ C(µa+1). Note that
|C(µa+1)| ∈ {|C(µa)| − 2, |C(µa)|}.

Next, if not all agents in C(µa+1) have optimal partners, then we can repeat the same
arguments to find another blocking pair (w∗2, f ∗2 ) ∈ µ∗ for outcome (µa+1, ua+1) such that
w∗2 ∈ C(µa+1) or f ∗2 ∈ C(µa+1), etc., as follows:
Step 2.3.1.l. For all l ≥ 1, if not all agents in C(µa+l−1) have optimal partners, then
let (µa+l, ua+l) be the outcome obtained by satisfying a blocking pair (w∗l , f ∗l ) ∈ µ∗ for
outcome (µa+l−1, ua+l−1) such that w∗l ∈ C(µa+l−1) or f ∗l ∈ C(µa+l−1). Assume that
|C(µa+l)| = |C(µa+l−1)| and that (µa+l, ua+l) is stable within the set C(µa+l) (otherwise we
apply the induction hypothesis and go to Step 3). Note that we have strictly increased the
number of agents that form couples and are matched according to µ∗: |C(µa+l)∩C(µ∗)| =
|C(µa+l−1) ∩ C(µ∗)|+ 2.
Since at each Step 2.3.1.l (l ≥ 1) the number of agents that form couples and are matched
according to µ∗ strictly increases by 2, we reach an outcome (µb, ub) (b > a) where all
agents in C(µb) have optimal partners in at most t+1 steps (unless we apply the induction
hypothesis and go to Step 3).

If (as in Case (*)) there exists some stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µb) =
(µb, ub)|C(µb) and for all i ∈ C(µ̃) \ C(µb), ũi > 0, then set (µc, uc) := (µb, ub) and go to
Step 3, where we complete our blocking path to stability by matching single agents in
S(µc) according to (µ̃, ũ). Otherwise (as in Cases (**) and (***)), continue the blocking
path as described in Case 3.2.
Case 3.2 (optimal partners and either Case (**) or unstable payoffs). If at outcome
(µa, ua) all couples are formed between optimal partners, then first set (µb, ub) := (µa, ua).
We continue the blocking path in this case with (µb, ub) as the initial outcome (note that
(µb, ub) can come either directly from Step 1 or from Case 3.1 within Step 2). Most
arguments for Case (**) and unstable payoff are the same [but whenever needed, we
mark arguments specific to Case (**) in parentheses as illustrated here].
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Each couple being formed by optimal partners at µb implies that there exists an optimal
matching µ̃∗ such that for all i ∈ C(µb), µ̃∗(i) = µb(i) and for all (w, f) ∈ µb, ubw + ubf =
π(w, f). By Lemma 1 (b) and (µ∗, u∗) being a stable outcome, (µ̃∗, u∗) is also a stable
outcome. Hence,

for all (w, f) ∈ µb, ubw + ubf = u∗w + u∗f = π(w, f). (3.5)

Note that if for all i ∈ C(µb), ubi = u∗i , then we would be in Case (*) and not have reached
Case 3.2. Hence, for some (w, f) ∈ µb, either [ubw < u∗w and ubf > u∗f ] or [ubw > u∗w and
ubf < u∗f ].

Let ū be the payoff vector that is obtained from the stable target payoff vector u∗ by
replacing the payoffs of the agents in C(µb) at u∗ with those at ub, i.e.,

ūi =

ubi if i ∈ C(µb)
u∗i otherwise.

(3.6)

[In Case (**), if payoff vector ū is stable, then set (µc, uc) := (µb, ub) and go to Step 3,
where we complete our blocking path to stability by matching single agents in S(µc)
according to (µ̃∗, ū) (using (µ̃, ũ) := (µ̃∗, ū) in Step 3). Otherwise, there is at least one
blocking pair 〈i, j〉 for outcome (µ̃∗, ū).] Since not all agents in C(µb) receive payoffs at ub
according to a stable payoff vector (recall that there does not exist a stable payoff vector
ũ such that ũ|C(µa) = ua|C(µa)), payoff vector ū is also not stable and at least one blocking
pair 〈i, j〉 for outcome (µ̃∗, ū) exists. Since u∗ is a stable payoff vector, by construction
(3.6), any blocking pair for outcome (µ̃∗, ū) involves a matched agent i1 ∈ C(µb) such that
ubi1 6= u∗i1 .

Assume that agent i1 ∈ C(µb) with ubi1 > u∗i1 is part of a blocking pair 〈i1, j1〉 for
outcome (µ̃∗, ū). Then, π(i1, j1) > ūi1 + ūj1 = ubi1 + u∗j1 > u∗i1 + u∗j1 , contradicting the
stability of payoff vector u∗. Hence, ubi1 < u∗i1 for the agent i1 ∈ C(µb) who participates
in blocking pair 〈i1, j1〉 for outcome (µ̃∗, ū). Note that j1 ∈ S(µb) and ubj1 = 0. Thus,
π(i1, j1) > ūi1 + ūj1 ≥ ubi1 + ubj1 and 〈i1, j1〉 is also a blocking pair for outcome (µb, ub).

Satisfy this blocking pair to obtain the next outcome (µb+1, ub+1) with the condition
that ub+1

i1 ∈ (ubi1 , u
∗
i1). (Then, ub+1

j1 = π(i1, j1) − ub+1
i1 > 0.) Recall that π(i1, µb(i1)) =

u∗i1 + u∗µb(i1) and note that at outcome (µb+1, ub+1) agent i1’s previous partner µb(i1) is
single and receives ub+1

µb(i1) = 0. By construction, ub+1
i1 < u∗i1 and ub+1

µb(i1) = 0 < u∗µb(i1).
Thus, 〈i1, µb(i1)〉 ∈ µb is a blocking pair for outcome (µb+1, ub+1) that we can satisfy to
obtain outcome (µb+2, ub+2) with the condition that ub+2

i1 = u∗i1 and ub+2
µb(i1) = u∗µb(i1).

To summarize, we can always identify two consecutive blocking pairs 〈i1, j1〉 (such that
i1 ∈ C(µb), ubi1 < u∗i1 , and j1 ∈ S(µb)) and 〈i1, µb(i1)〉 such that the resulting outcome
rematches the original couple 〈i1, µb(i1)〉 with payoffs u∗i1 and u∗µb(i1). After satisfying such
a short stabilizing blocking sequence to obtain an outcome (µb+2, ub+2), if either Case (**)
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or there does not exist a stable payoff vector ũ such that ũ|C(µb+2) = ub+2|C(µb+2), then
we can repeat the same arguments to find another short stabilizing blocking sequence to
obtain an outcome (µb+4, ub+4), etc., as follows:
Step 2.3.2.l. For all l ≥ 1, if either Case (**) or there does not exist a stable payoff
vector ũ such that ũ|C(µb+2l−2) = ub+2l−2|C(µb+2l−2), then let (µb+2l, ub+2l) be the outcome
obtained by satisfying a short stabilizing blocking sequence with blocking pairs 〈il, jl〉
(such that il ∈ C(µb+2l−2), ub+2l−2

il
< u∗il , and jl ∈ S(µb+2l−2)) and 〈il, µb(il)〉 such that

the resulting outcome rematches the original couple 〈il, µb(il)〉 with payoffs u∗il and u∗µb(il).
Assume that |C(µb+2l)| = |C(µb+2l−2)| (otherwise we apply the induction hypothesis and
go to Step 3). Note that we have strictly increased the number of agents that form couples
and receive payoffs according to u∗: |{i ∈ C(µb+2l) | ub+2l

i = u∗i }| = |{i ∈ C(µb+2l−2) |
ub+2l−2
i = u∗i }|+ 2.

Since at each Step 2.3.2.l (l ≥ 1) the number of agents that form couples and receive
payoffs according to u∗ strictly increases by 2, we reach an outcome (µc, uc) (c > b) in at
most t+ 1 steps (unless we apply the induction hypothesis and go to Step 3).

By construction, there now exists some stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µc) =
(µc, uc)|C(µc) and for all i ∈ C(µc), uci > 0. We go to Step 3, where we complete our
blocking path to stability by matching single agents in S(µc) according to (µ̃, ũ).

Step 3: Matching Completion Process

We continue our blocking path (µc, uc), (µc+1, uc+1), ... with the aim to rematch the single
agents at µc according to the stable outcome (µ̃, ũ) such that (µ̃, ũ)|C(µc) = (µc, uc)|C(µc)
and for all i ∈ C(µ̃) \ C(µc), ũi > 0.
Step 3.l. For all l ≥ 1, if there exists (wl, fl) such that wl, fl ∈ C(µ̃) \ C(µc+l−1)
and µ̃(wl) = f l, then (wl, fl) is a blocking pair for (µc+l−1, uc+l−1) such that wl and fl
are single at µc+l−1. Satisfy this blocking pair to obtain (µc+l, uc+l) with the property
that for i ∈ {wl, fl}, uc+li = ũi. Note that the new set of agents that form couples
C(µc+l) = C(µc+l−1) ∪ {wl, fl} contains more agents: |C(µc+l)| = |C(µc+l−1)|+ 2.

The matching completion process increases the number of couples without perturbing
the stability within the set of matched agents. The process terminates when all agents have
been (re)matched according to the stable outcome (µ̃, ũ). Hence, the matching completion
process terminates in finitely many steps resulting in a stable outcome (µ̃, ũ).
Proof of Theorem 2.
Let (W,F, π) be an assignment problem violating Assumption 1. Hence, there exists
no stable outcome (µ∗, u∗) such that for each agent i ∈ W ∪ F who is not single, i.e.,
µ∗(i) 6= i, we have u∗i > 0. Equivalently, for all stable outcomes (µ∗, u∗) there exists an
agent i ∈ W ∪ F who is not single such that u∗i = 0.
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Define the set of agents who are not single but receive a zero payoff at some stable out-
come by X(W,F, π) = {i ∈ W ∪ F | there exists (µ∗, u∗) ∈ S(W,F, π) such that µ∗(i) 6=
i and u∗i = 0}.

Let (µ̂, û) be a stable outcome and let (µ̃, ũ) be the outcome that is obtained by
unmatching all agents i ∈ X(W,F, π). Thus, X(W,F, π) ⊆ S(µ̃). Then, from outcome
(µ̃, ũ) no blocking path leads to stability. The reason for this is that in order to end in
a stable outcome (µ∗, u∗), one of the agents in X(W,F, π) needs to be matched at a zero
payoff along the blocking path. This, however, violates the strict blocking norm.

B Appendix: Example for Theorem 1

Let (W,F, π) be an assignment problem given by W = {w1, w2, w3, w4}, F =
{f1, f2, f3, f4} and the characteristic function π is given (in matrix notation) by

π =


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2


where the element in row i and column j corresponds to the value π(wi, fj).14 Let (µ∗, u∗)
be a stable outcome for (W,F, π). The unique optimal matching for (W,F, π) is

µ∗ = [(w1, f1), (w2, f2), (w3, f3), (w4, f4)]

and the set of stable payoffs is such that

(i) for all (w, f) ∈ µ∗, u∗w + u∗f = 2 and

(ii) for all (w, f) ∈ W × F , u∗w + u∗f > 1.

Initial Outcome: consider the unstable outcome (µ1, u1), such that

µ1 = [(w1, f4), (w2, f3), (w3, f2), (w4, f1)] and

u1 = (u1
w1 , u

1
w2 , u

1
w3 , u

1
w4 , u

1
f1 , u

1
f2 , u

1
f3 , u

1
f4) = (1, 1, 1, 0, 1, 0, 0, 0).

Thus, the sets of matched agents and single agents at µ1 are C(µ1) = W∪F and S(µ1) = ∅,
respectively. The picture below represents outcome (µ1, u1).

14For instance, worker w2 and firm f2 generate value π(w2, f2) = 2 and worker w2 and firm f3 generate value
π(w2, f3) = 1.
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w1 f4

w2 f3

w3 f2

w4 f1

1

1

1

1

C(µ1)

∅S(µ1)

There are five blocking pairs for (µ1, u1), all of them being within C(µ1):

(w2, f2),
(w3, f3),
(w4, f2), (w4, f3), and (w4, f4).

Step 1: Unmatch Process

First we unmatch as many couples as possible.
Step 1.1. Satisfy the blocking pair (w4, f2) to obtain outcome (µ2, u2), such that w4 and
f2 equally split the blocking surplus

bs(µ1, u1;w4, f2) = π(w4, f2)− u1
w4 − u

1
f2 = 1.

Hence, at outcome (µ2, u2), w4 and f2 form a couple and obtain payoffs u2
w4 = 1/2 and

u2
f2 = 1/2, and their previous partners w3 and f1 are single and obtain zero payoffs. All

the other agents are matched to the same partners and earn the same payoffs as before.
Outcome (µ2, u2) is thus

-

-

-�

w1 f4

w2 f3

w4 f2

1

1

1/2 1/2

C(µ2)

w3. .f1S(µ2)

There are three blocking pairs for (µ2, u2) within C(µ2):

(w2, f2),
(w4, f3), and (w4, f4).
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Step 1.2. Satisfy the blocking pair (w4, f4) to obtain outcome (µ3, u3), such that w4 and
f4 equally split the blocking surplus

bs(µ2, u2;w4, f4) = π(w4, f4)− u2
w4 − u

2
f4 = 3/2.

Hence, at outcome (µ3, u3), w4 and f4 form a couple and obtain payoffs u3
w4 = 5/4 and

u3
f4 = 3/4, and their previous partners w1 and f2 are single and obtain zero payoffs. All

the other agents are matched to the same partners and earn the same payoffs as before.
Outcome (µ3, u3) is thus

-

-�

w2 f3

w4 f4

1

5/4 3/4

C(µ3)

w1. .f1

w3. .f2

S(µ3)

Outcome (µ3, u3) is stable within the set of agents that form couples, i.e., (µ3, u3)|C(µ3) is
stable. Then, set (µa, ua) := (µ3, u3) and go to Step 2 where we stabilize the set of agents
that form couples.

Step 2: Stabilization Process

Second, we stabilize the set of agents that form couples. For instance, two blocking pairs
of optimal partners for (µa, ua): (w2, µ

∗(w2)) = (w2, f2) and (w3, µ
∗(w3)) = (w3, f3). If we

satisfy one of those blocking pairs, we increase the number of agents who are matched to
an optimal partner. As we will see, depending on which blocking pair we satisfy, that is
either (w2, f2) or (w3, f3), the blocking path might take different routes. We investigate
the two cases.

Case 1: Let (w2, f2) block (µa, ua)

Satisfy the blocking pair (w2, f2) to obtain outcome (µa+1, ua+1), such that w2 and f2
equally split the blocking surplus

bs(µa, ua;w2, f2) = π(w2, f2)− uaw2 − u
a
f2 = 1.

Hence, at outcome (µa+1, ua+1), w2 and f2 form a couple and obtain payoffs ua+1
w2 = 3/2

and ua+1
f2 = 1/2, and w2’s previous partner f3 is single and obtains zero payoffs. All

the other agents are matched to the same partners and earn the same payoffs as before.
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Outcome (µa+1, ua+1) is thus

-�

-�

w2 f2

w4 f4

3/2 1/2

5/4 3/4

C(µa+1)

w1. .f1

w3. .f3

S(µa+1)

Outcome (µa+1, ua+1) is stable within the set of agents that form couples, i.e.,
(µa+1, ua+1)|C(µa+1) is stable. Furthermore, all agents in C(µa+1) are matched to an opti-
mal partner. Let

ũ = (3
2 ,

3
2 ,

3
2 ,

5
4 ,

3
4 ,

1
2 ,

1
2 ,

1
2)

be a payoff vector. Notice that ũ is stable since, for all (w, f) ∈ W×F , ũw+ ũf ≥ π(w, f).
Hence, by Lemma 1, outcome (µ∗, ũ) is stable. Furthermore, we are in Case (*) with
optimal blocking pairs

(w1, f1) and (w3, f3)
for (µa+1, ua+1) within S(µa+1). Set (µc, uc) := (µa+1, ua+1) and go to Step 3.

Case 2: Let (w3, f3) block (µa, ua)

Satisfy the blocking pair (w3, f3) to obtain outcome (µa+1, ua+1), such that w3 and f3
obtain payoffs ua+1

w3 = 0.1 and ua+1
f3 = 1.9. Hence, at outcome (µa+1, ua+1), w3 and f3

form a couple, and f3’s previous partner w2 is single and obtains zero payoffs. All the
other agents are matched to the same partners and earn the same payoffs as before.
Outcome (µa+1, ua+1) is thus

-�

-�

w3 f3

w4 f4

0.1 1.9

5/4 3/4

C(µa+1)

w1. .f1

w2. .f2

S(µa+1)

Outcome (µa+1, ua+1) is not stable within the set of agents that form couples, i.e.,
(µa+1, ua+1)|C(µa+1) is not stable. Precisely, worker w3 and firm f4 generate a positive
blocking surplus

bs(µa+1, ua+1;w3, f4) = π(w3, f4)− ua+1
w3 − u

a+1
f4 = 1− 0.1− 3

4 = 0.15,
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such that (w3, f4) is a blocking pair for (µa+1, ua+1). Then, satisfy this blocking pair to
reduce the set of agents that form couples by one couple and apply the induction hypothesis
to obtain a blocking sequence that stabilizes the set of agents that form couples.

Step 3: Matching Completion Process

Let (µc, uc) := (µa+1, ua+1) (obtained from Case 1). In this step, we complete the blocking
path to stability by matching the single agents in S(µc) according to the stable outcome
(µ∗, ũ).
Step 3.1. Satisfy the blocking pair (w1, f1) to obtain outcome (µc+1, uc+1), such that w1
and f1 obtain stable payoffs uc+1

w1 = ũw1 = 3/2 and uc+1
f1 = ũf1 = 1/2. Hence, at outcome

(µc+1, uc+1), w1 and f1 form a couple and obtain stable payoffs, and the remaining single
agents are w3 and f3 who obtain zero payoffs. All the other agents are matched to the
same partners and earn the same payoffs as before. Outcome (µc+1, uc+1) is thus

-�

-�

-�

3/2 1/2

3/2 1/2

5/4 3/4

w1 f1

w2 f2

w4 f4

C(µc+1)

w3. .f3S(µc+1)

Outcome (µc+1, uc+1) is stable within the set of agents that form couples, i.e.,
(µc+1, uc+1)|C(µc+1) is stable. Furthermore, all agents that form couples are matched to
an optimal partner and obtain stable payoffs. Thus, there is only one blocking pair for
(µc+1, uc+1): (w3, f3).
Step 3.2. Satisfy the blocking pair (w3, f3) to obtain outcome (µc+2, uc+2), such that w3
and f3 obtain stable payoffs uc+2

w3 = ũw3 = 3/2 and uc+2
f3 = ũf3 = 1/2. Hence, at outcome

(µc+2, uc+2), w3 and f3 form a couple and obtain stable payoffs, and there are no single
agents left. All the other agents are matched to the same partners and earn the same
payoffs as before. Outcome (µc+2, uc+2) is thus

-�

-�

-�

-�

3/2 1/2

3/2 1/2

3/2 1/2

5/4 3/4

w1 f1

w2 f2

w3 f3

w4 f4

C(µc+2)
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∅S(µc+2)

At outcome (µc+2, uc+2), all the agents are matched to an optimal partner and ob-
tain stable payoffs. Therefore, outcome (µc+2, uc+2) is stable and the blocking path
(µ1, u1), ..., (µc+2, uc+2) leads to stability in finitely many steps.
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