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Abstract
Because the permanent incomes of parents are children are typically unobserved,
the estimation of the intergenerational correlation via the use of proxy variables
entails an errors-in-variables bias. By solving a system of moment equations for
income observed at a given year, and a T-period average of this variable, we
derive an analytical form for the signal to total variance ratio. In turn, we
propose a simple estimator of the intergenerational elasticity via division of the
OLS estimator by this quantity. Estimates of the intergenerational elasticity
derived from a PSID sample range between 0.34 and 0.69. The averaging
estimator provides intermediary values between OLS and the proposed
estimator. Persistence is higher for family income measures than labor market
outcomes. Estimates generally increase for moving average specifications in
comparison to the assumption that measurement errors are uncorrelated. The
three estimators are further examined in the light of their mean-square errors
(square bias plus variance).

Keywords: intergenerational mobility, Galtonian regression, errors in variables,
mean-square errors.
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1 Introduction

For those who view inequality of incomes as being naturally inherent to
the way a market economy operates, a question arises as to how individuals of
different family backgrounds move about the social ladder. Do the children of
poor origins, and those raised in opulence, face equal prospects of occupying
various positions in the distribution of income? How many generations will it
take for recent immigrants to be on average equally well off as the native
population of a host country? In order to begin to address issues of this nature,
one needs to formulate an empirical framework for analyzing income dynamics.

There has been a renewed interest in recent years in the estimation of the
extent of income continuity across generations. The problem of estimating the
intergenerational elasticity of incomes is particularly challenging since, as it
stands, the variables of interest, namely the permanent incomes of parents and
children, are typically unobservable. Instead, the researcher will possess a short
time-series of observations on some income indicator (family income, earnings,
hourly wage etc.), on the basis of which, estimation of the intergenerational
elasticity is to be attempted.

Because this type of measurement error biases the ordinary least squares
estimator towards zero, Behrman and Taubman (1990), Solon (1992),
Zimmerman (1992), Bjorklund and Jantti (1997), Mulligan (1997), and others,
have suggested to regress a measure of the child's income on the averaged
income of her/his parents for the years of data available in the sample under
use. The rationale underlying the method of averaging is to increase the variance
ratio of permanent to observed income, and hence to reduce the asymptotic bias
of the resulting estimator.

It remains nonetheless that the averaging estimator is bound to remain
inconsistent in a short panel. At this stage one may attempt to model the
covariance structure of the incomes of parents and children (Zimmerman, 1992;
Altonji and Dunn, 1991). While such approaches may generate consistent
estimators (which may also be shown to be efficient within appropriately
defined classes), their validity rests on the researcher’s capacity to correctly
specify the moment restrictions pertaining to a system of equations. A popular
alternative to such procedures consists in instrumenting parental income using
family background variables such as education. This latter method is of some
appeal, as it is informationally less demanding in the sense that it necessitates
the choice of a single valid instrument. However, Solon (1992) has argued that
instruments such as the education of the parent-head may correlate with the
error term of the income transmission model, which in turn may entail
inconsistent estimation of the intergenerational elasticity.

As panel data provide repeated measurements on family incomes, one
may attempt to circumvent the problem of selecting valid out of equation
instruments, by making use of leads and lags of parental income as within
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equation instruments. Thus, following Griliches and Hausman (1986), Abul
Naga and Krishnakumar (1999) set out to estimate the intergenerational
correlation of incomes within the context of a panel data framework with errors
of measurement. Our approach in this paper is somewhat different. First,
observe that the asymptotic biases of the OLS and averaging estimators are both
functions of two parameters, namely the variances of permanent and transitory
incomes. Next, note that provided these two variance components can be
estimated, the OLS estimator may be appropriately rescaled in a way as to
achieve consistency. We show in the paper that it is generally possible to obtain
analytical expressions for these two variance components, as solutions to a
system of two moment equations in two unknowns. Alternatively, we may
observe that the OLS estimator can be viewed as a member of the family of T-
period averaging estimators (the T=1 case). We may then state our approach as
being an attempt to exploit the information contained in the asymptotic biases of
a sequence of averaging estimators with the aim of deriving a consistent
estimator of the intergenerational elasticity.

The proposed estimator in this paper is straightforward to compute and
easy to interpret. Once consistent estimators are obtained for the permanent and
transitory variance components, we rescale the OLS estimator through division
by the estimated signal to total variance ratio in a way as to neutralize the errors-
in-variables bias. We may however note at this stage that this consistency gain
does not come without cost. Because the signal to total variance ratio is smaller
than unity, the rescaling of the OLS estimator by this quantity will therefore
increase its variance. A natural question then arises as to how to model and
quantify the tradeoff between the use of an inconsistent estimator on the one
hand, and a consistent statistic, with a possibly larger variance, on the other
hand. One possible solution to statistical problems of this nature consists in
comparing estimators in terms of their mean-square errors (squared bias plus
variance), a point that that we shall discuss in more detail below.

In order to render our estimator operational we need to derive its large
sample distribution. As the proposed statistic is a rescaling of the OLS estimator,
its distribution is a simple linear transformation of that of the ordinary least
squares estimator in an errors-in-variables environment. A study of the latter
distribution, following the work of Aigner (1974), however shows that
previously reported standard errors in the intergenerational mobility literature
were incorrect, as they ignored a component of variance originating from the
measurement error. This conclusion is likewise shown to apply to the averaging
estimator. A derivation of the variance of the averaging estimator in fact reveals
that an increase in T, the number of years over which parental income is
averaged, has an ambiguous effect on the precision of this statistic. Thus, it may
well be that while the OLS estimator has a larger asymptotic bias than the
averaging estimator, its variance turns out to be smaller. Again, this observation
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then leaves room for OLS to dominate the averaging estimator in a mean-square
error sense.

Because neither of the three estimators considered in this study can be
analytically claimed to dominate any of the other two in a mean-square error
sense, we offer two ways for the practitioner to think about which estimator to
rely most on in empirical work. At the theoretical level, it may be noted that as
the number of parent and child observations approaches infinity, the asymptotic
variances of the estimators considered here vanish to zero. When working with
large samples, the practitioner may therefore arguably abstract from variance
considerations and rank the estimators from the least, to the most biased, in an
asymptotic sense. On such grounds, the empirical analyst may wish to place
most confidence on rescaled OLS (the estimator proposed in this study), and the
least on unadjusted OLS.

A more cautious data analyst would however point out that, at present,
most parent-child samples rarely exceed 1000 observations (see for eg. Haveman
and Wolfe, 1995; table 2a). A more conservative approach to this problem would
therefore consist in computing numerically the mean-square errors of the three
estimators as a basis of further assessing their respective reliabilities. As sample
sizes may greatly differ from one application to the next, we would in fact
recommend the latter approach. We therefore provide in the paper consistent
estimators for the various parameters required for the evaluation of asymptotic
biases and mean-square errors. All estimators proposed here have analytical
expressions, making the computation of mean-square errors a simple and
straightforward exercise.

The structure of the paper is the following. Section 2, comprising four
sub-sections, sets the problem of estimating the intergenerational elasticity in the
context of a Galtonian model of income transmission. Section 3 presents our
data, section 4 contains empirical applications, while section 5 ends the paper
with some concluding comments.

In sub-section 2A we examine in some detail the consequences of
measurement error. We show that the variance formulas for OLS and the
averaging estimator are misspecified. We also show that consistent estimation of
these quantities requires knowledge of the permanent and transitory variance
components of income. In sub-section 2B we derive our estimators of the
permanent and transitory variance components of income by solving a system of
two moment equations in two unknowns. There, we also present our proposed
estimator of the intergenerational elasticity and derive its large sample
distribution. As the variance of the rescaled OLS estimator depends on the same
set of parameters as in the case of OLS and the averaging estimator, our
discussion in this sub-section also covers the estimation of the variances of these
estimators. In the following sub-section we derive the mean-square errors of the
three estimators and show why they cannot be ranked. Section 2 is closed with a
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discussion on how our framework may be extended in a simple way to deal with
moving average-type serial correlation in the transitory component of income.

Section 4 presents an empirical application of our methodology to a US
sample of parents and children extracted from the panel study of income
dynamics. We have selected our observations in a way as to replicate several
sampling features of data sets used in this literature (see for instance Solon, 1992
and Zimmerman, 1992). We have looked at intergenerational continuities for
commonly used measures of economic status. These included the hourly wage
and annual earnings of the household head, and the total family income with
and without adjustment for family size. Incomes of parents were observed over
the four-year period 1967-70. Incomes of children referred to the year 1991. Our
estimates of the intergenerational elasticity are in the order of 0.34 to 0.69.
Estimates vary according to the income definition used. Likewise, they are
shown to be sensitive to the assumptions pertaining to the serial correlation in
the transitory component of income. Our estimates of the signal to total variance
ratio are mostly in the 0.70 to 0.84 range, suggesting that the bias of the
unadjusted OLS estimator is far from being negligible.

2 Estimation and Inference
We are interested in quantifying the degree of income inheritance β in a

regression of the child's permanent income icη on that of her/his parents, ipη .
Assuming all variables are expressed in deviations from their respective means,
the Galtonian regression model is of the form

iipic ζβηη +=

where iζ  is a disturbance term assumed to be uncorrelated with ipη . Because the

complete life movies icη  and ipη  are typically unobserved, these variables are

proxied by measurements ity  and itx  (annual earnings, family incomes, wages
etc.) assumed to exhibit the classical errors in variables properties, namely:

iticity φη +=

itipitx εη +=

The fact that icη  is measured with noise does not entail biases in the estimation
of β. Hence, in what follows, we will define

itipit vy += βη (1)

with itiitv φζ += , as our theoretical model.
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A: Consequences of measurement errors
In contrast with the baseline model (1), the measurement model

ititit uxy += β (2a)

ititit vu βε−= (2b)
is subject to a specification bias in the sense that the composite error term itu  is
correlated with itx (via itε ).

For a given time period, the standard probability limit formula for the
OLS estimator given in the literature (for eg. Solon, 1992) is

plim )()ˆ( εεσσβσβ += pppp / (3)

where ppσ  is the variance of the permanent component ipη  and εεσ that of the
transitory component of the parents' income.

The averaging estimator extensively used in the literature (for eg. Solon,
1992; Zimmerman, 1992; and Bjorklund and Jantti, 1997) regresses ity  on a time-

series average Txx
T

t
iti /

1
∑

=

= on parental income, yielding an estimator β  with

probability limit:

plim )/()( Tpppp εεσσβσβ += / (4)

The probability limit formula assumes that itε  is stationary and serially

uncorrelated 1. The appeal of the averaging estimator β  can be illustrated by
means of a simple numerical example. If say ppσ =3/4 and εεσ  =1/4, yielding a

signal to total variance ratio of 3/4, then plim( β̂ )=3β/4,. With a two period
average, plim( β )=7β/8. If T=4, plim( β )=12β/13 etc. Αs can clearly be read
from (4), the bias of β  will vanish as T goes to infinity. It remains though that
because T is small in all data applications, constructing a consistent estimator of
β may be a worthwhile task.

Because the OLS estimator (as well as β ) is inconsistent, its standard
error is also misspecified. To see that this is so, consider its large sample
distribution. Note firstly that its mean is given by the probability limit formula
(3). Standard errors reported in the literature are based on

                                                            
1 See Zimmerman (1992),also Griliches and Hausman (1986).
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1

22

1

/)ˆ( β (5)

where n denotes sample size. While the above formula is valid in the Gauss-
Markov model, in the present context, the errors-in-variables model, it is
inappropriate. Following Aigner (1974), the variance of the OLS estimator is
given by

)/()ˆ( ** εεσσσβ += ppV (6)
where

)/(2
** εεσσσσσ +−= ppxyyy (7)

The term yyσ is the population variance of y, that is the variance of y evaluated in
the baseline model (1):

vvppyy σσβσ += 2

  
Likewise, xyσ  is the covariance between y in (1) and the noisy measurement itx ,

viz., ppxy βσσ = .
Hence, gathering the various terms in (7) we obtain

)/(2
** εεεε σσσσβσσ ++= ppppvv (8)

The second term on the left-hand side of (8) arises because of the measurement
error problem. In absence of this, εεσ =0, and **σ  reduces to the usual formula, on
the basis of which, the derivation of standard errors using (5) would be correct.

Using the above results, the large sample distribution of the OLS
estimator in the present context is given by

[ ] [ ]),/(0~)ˆ(ˆ
** εεσσσββ +− pp ; Nlimpn (9)

For the same reasons as in the case of the OLS estimator, the estimator

∑∑
==

−
n

i
i

n

i
iit xnxy

1

22

1

/)( β (10)

for the variance of β is misspecified. Noting that β can be treated as an estimator
for a model with a regressor ix , whose variance is given by Tpp /εεσσ + , we

may readily derive the following large sample distribution for β :
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];0[~)]lim([ θββ  Npn −

where, θ, the variance βn of is given by

2

2

)/(

/

)/( T

T

T pp

pp

pp

vv

εε

εε

εε σσ

σσβ

σσ
σ

θ
+

+
+

= (11)
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The lesson to learn then, is that consistent estimators for ppσ  and εεσ are required
in order to identify the large sample distributions of the OLS and averaging
estimators. The next sub-section of the paper deals with this task.

B: Estimation
Let itx  be a snapshot observation on the parents' income, and ix  be a T-

period average. The variance formula for the decomposition of income into
permanent and transitory components entails the following system of two
equations in two unknowns:

εεσσ += ppitxV )( (12a)

TxV ppi /)( εεσσ += (12b)

In turn, these yield as solutions

[ ])()(
1 iit xVxV

T

T
−

−
=εεσ (13a)

1

)()(

−
−

=
T

xVxTV iti
ppσ (13b)

Upon replacing )( itxV  and )( ixV  by their sample counterparts, consistent
estimators ppσ̂  and εεσ̂  obtain for the variance components of x 2.

Now define λ as the signal to total variance ratio:

)/( εεσσσλ += pppp (14)

Rewriting the probability limit formula (3) for the OLS estimator, it follows that
plim( β̂ )=β λ. Furthermore, define )ˆˆ/(ˆˆ

εεσσσλ += pppp . It is a consequence of the

continuous mapping theorem that provided ppσ̂  and εεσ̂  both converge to their

population counterparts, λ̂  is also consistent for λ. We propose then to estimate
β by introducing a correction factor (1/λ) to the OLS estimator in order to achieve
consistency:
                                                            
2 Other estimators for ppσ  and εεσ  may be envisaged. For instance, one may

replace (10b) by an equation in first differences εεσ2)( 1 =−+ itit xxV , to yield for
solutions 2/)( 1 itit xxV −= +εεσ  and 2/)()( 1 itititpp xxVxV −−= +σ . However, it is a
consequence of Slutsky’s theorems (Goldberger 1991, ch. 9) that the large sample
distribution of b is invariant to the choice of consistent estimators of the variance
components.
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b = β̂ / λ̂  (15)

Letting )( itxs  and )( ixs  respectively denote the sample second order moments of

itx  and ix , this new estimator may alternatively be written as

β̂
)()(

)()1(

iti

it

xsxTs

xsT
b

−
−

= (16)

Below we refer to this statistic as the rescaled OLS estimator.
Since λ̂  converges in probability to λ, and [ ])ˆlim(pˆ ββ −n converges in

distribution to (9), it is a result of Slutsky’s theorem that the ratio b = β̂ / λ̂  has the
following large sample distribution:

[ ])(/;0~)( 2
** εεσσλσβ +− ppNbn (17)

We may state this result more simply by noting that since b is a simple rescaling
of the OLS estimator, its large sample variance is a factor )/1( λ  times that of β̂ .

What remains for the estimator b to become operational is the derivation
of its standard error. Going back to (8), we require a consistent estimator of vvσ .

)( itipitititit bybxyw εη +−=−=

We have

∑ ∑∑∑
= ===

−−+−=
n

i

n

i
itipitit

n

i
ipit

n

i
it bybbyw

1 1

22

1

2

1

2 )(2)( εηεη

As the third term converges in probability to zero, we have that

∑
=

+=
n

i
vvitw

n
p

1

221
lim εεσβσ

where, once again, the second term on the left hand side arises from the
measurement error. Hence, vvσ may be consistently estimated via

∑
=

−=
n

i
itvv bw

n 1

22 ˆ
1

ˆ εεσσ (18)

where εεσ̂  is the sample counterpart of εεσ  as defined in (13a). In passing, we
may note that the above estimator also provides the necessary information to
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correctly estimate the standard error of the (inconsistent) OLS estimator, the
latter also being a function of ppσσ εε ,  and vvσ , as shown in equation (9).

C: Mean-square error comparisons
The estimator b is then the preferred one over OLS and the method of

averaging in terms of consistency. The purpose of this sub-section is to further
compare the three estimators in terms of mean-square errors (here defined as
squared asymptotic bias plus asymptotic variance).

For a pair of unbiased estimators, mean-square error (MSE)
comparisons readily translate to the familiar exercise of variance ranking.
Conversely, for two estimators with identical variances, MSE contrasts
amount to evaluating the estimators in terms of biases. Clearly, neither of
these cases applies here, hence the need for a more in depth comparison of
these estimators.

Using equations (3), (8) and (9), we may readily derive the following
mean-square error formula for the OLS estimator:













+
+

+
+

+
=

2

2

2

22

)()(

1

)(
)ˆ(

εε

εε

εεεε

εε

σσ

σσβ

σσ
σ

σσ
σβ

β
pp

pp

pp

vv

pp n
MSE (19)

where, in the present context, the large sample bias of β̂  is taken as

)ˆlim(ββ p− (derived on the basis of 3), and the second term of the right hand

side of (19) is var( β̂ ) as defined in (9). For b, a consistent estimator, its mean-

square error collapses to its large sample variance, viz. 2/)ˆvar( λβ . On such

grounds, the difference between the MSEs of β̂ and b can be written as a
function ∆ with arguments β, vvpp σσσ εε ,, , and n:





 −













+
+

+
+

+
=∆

22

2

2

22 1
1.

)()(

1

)(
),,,,(

λσσ

σσβ

σσ
σ

σσ
σβ

σσσβ
εε

εε

εεεε

εε
εε

pp

pp

pp

vv

pp

vvpp n
n (20a)

Or, alternatively, defining Bias( β̂ )=β-plim( β̂ ),





 −+=−=∆

2
2 1

1).ˆvar()ˆ(Bias)()ˆ(
λ

βββ bMSEMSE (20b)

The lesson to learn from either forms of (20), is that, because 0<λ<1, the first
term on the right hand side is positive, while the second is negative. Hence,
the price to pay in moving from β̂  to b, i.e. in gaining consistency, is to have a

variance increase. In general, then, the ranking of β̂  and b will be ambiguous
in terms of mean-square error.

However, it is possible to sign the effect of a subset of the arguments of
the function ∆ on the difference in the mean-square errors of the two



10

estimators. Differentiation of ∆ with respect to n, vvσ , and β is
straightforward. On such grounds, the difference in mean-square errors can
be shown to be increasing in n and diminishing in vvσ . That is, other things
equal, b is to be preferred in large samples over OLS. Conversely, the larger
the disturbance variance vvσ  of the baseline model, the better β̂  will perform
vis-à-vis b in terms of mean-square error. The effect of an increase in β on the
other hand cannot be signed. This is also the case for the remaining two
parameters, namely εεσ  and ppσ , which, together with β, appear in both the
bias and variance components of (20).

Turning now to the case of the averaging estimator, define γ as the
variance ratio

Tpp

pp

/εεσσ

σ
γ

+
= (21)

Rewriting (4) using the above notation, we have βγβ =)lim(p ; alternatively,
Bias( β )=β(1−γ). Hence the mean-square error of β  can be expressed as

nMSE /)1()( 22 θγββ +−= , that is:













+
+

+
+

+
=

2

2

2

222

)/(

/

)/(

1

)/(

/
)(

T

T

TnT

T
MSE

pp

pp

pp

vv

pp εε

εε

εεεε

εε

σσ

σσβ

σσ
σ

σσ
σβ

β (22)

where θ, the variance of the averaging estimator, is defined as in (11). The
point to note in (22) is that, while the effect of an increase in the number of
measurements T over which parental income is averaged reduces the
asymptotic bias of β , it nonetheless has an ambiguous effect on its variance.
Hence, the effect of an increase in T is also ambiguous on the mean-square
error of the averaging estimator.

This observation however entails further implications about the
ranking of β , β̂ and b in terms of mean-square errors. Since OLS can be
considered as an averaging estimator for which T=1, a comparison of (22)
with equations (6) and (8) pertaining to the variance of the OLS estimator,
shows that, in presence of finite samples, one cannot generally establish the
superiority of β , over β̂  in terms of mean-square errors. While β  clearly

possesses a smaller asymptotic bias than β̂  (for T>1), empirical investigations
will prove useful in order to provide further guidelines concerning the
relative merits of these two estimators. For the same reason that the effect of
an increase in T on the variance of β  cannot be signed, the MSE ranking of b
and the averaging estimator cannot be established. The opposite statement
would be somewhat surprising given our earlier conclusion that β̂ and b
could not generally be ranked using this latter criterion.
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D: Extensions
This sub-section provides simple extensions of our framework in order

to deal with estimation in presence of serially correlated transitory
components of income.

The presence of a cross-section of observations on the parent family’s
income can be further exploited to relax the assumption that the transitory
component itε  of itx  is uncorrelated over time. Previous research on the
covariance structure of earnings (MaCurdy 1982, Abowd and Card, 1989,
Schluter 1998) suggests that passed a certain time lag, income changes
(intended to difference out time invariant components) are uncorrelated. For
this reason, the parameterization of the transitory component of income by an
MA(q) process may provide a useful starting point for relaxing the
assumption that errors are serially uncorrelated. Other alternatives clearly
exist. For instance Zimmerman (1992) adopts an AR(1) specification for this
same purpose. We shall discuss this point in further detail in the final section
of the paper, where we provide some directions for further research.

For now, the simplest way to examine the consequences of allowing for
serially correlated errors is to note that variance formula for ix , (10), will then
require modification. For example, if T=2,

)cov(2/
2 21

21
iipp

ii xx
V εεσσ εε ++=



 +

While the estimation of covariance terms can be undertaken by making use of
further sample moments, typically covariances between itx  and isx , a simple
solution here consists in taking averages for incomes observed several periods
apart. If for instance we postulate that itε  follows an MA(1) process, equations
(10) and all the subsequent developments are valid if we construct averages
over 42 ,, ++ ititit x x x …, etc. Likewise, for an MA(2) specification, series of the
type ,...,, 63 ++ ititit x x x are to be constructed.
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3 Data
Our sample was extracted from the University of Michigan’s Panel

Study of Income Dynamics (PSID). From the first wave of the Panel (1968) we
have identified families with dependent children, which we have attempted
to follow up to 1992 (wave XXV). The PSID consists of two major files
commonly referred to as the SRC and SEO, details of which can be found in
Hill (1993). The SEO file is a sample of low income families which had
participated in the Survey of Economic Opportunity in the years 1965 and
1966, and then accepted to take part in the wider survey carried out by the
University of Michigan’s Institute of Social Research, since 1967. The SRC
component, the new sample selected by the Institute of Social Research, has
been designed as a national probability sample, intended to be representative
of the US population.

In the present study we have only worked with data originating from
the SRC file, in an attempt to minimize the problem of homogeneity bias
(Solon, 1989 and 1992) which may arise from the use of a non-random sample
such as the SEO. While we recognize that studying income continuities
amongst families on low income is a topic of inherent interest, we have
chosen here to work exclusively with a random sample and to pursue this
latter question elsewhere.

We have observed the incomes of parents over the four years period
1967-70 and those of children in 1991. In accordance with several previous US
studies (eg. Solon, 1992 and Zimmerman, 1992), we have restricted ourselves
to the examination of father and son linkages, leaving aside female headed
households and, or, father-daughter pairs. As the labor supply decisions of
men and women may be governed by different forces it is perhaps more
cautious to analyze these data separately (though see Dearden, Machin and
Reed, 1997 for UK evidence on the differential pattern of income inheritance
across father-daughter and father-son pairs). Likewise, we have retained a
single child per family in order to avoid problems of correlation across
observations. We note however that this latter problem may be treated via the
adoption of generalized least squares data weighting schemes.

We have looked at four commonly used indicators of economic status:
total family income, family income normalized by the Orshansky needs scale,
total annual earnings, and the average hourly wage of the household head.
Our overall sample comprised 596 observations, though it is important to
note that sample sizes vary depending on the choice of indicator being used.
Table 1 summarizes our data in terms of age, hourly earnings of household
heads, together with their needs-adjusted family incomes. The Consumer
Price Index was used in this study in order to deflate all incomes back to 1967
dollars.
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Table 1: descriptive statistics

variable mean standard deviation

parent head’s age in 1968

child head’s age in 1992

parents’ income in 1967

child family’s income in 1991

parent head’s wage in 1967

child head’s wage in 1991

40.81

36.60

2.60

4.28

3.85

4.06

9.86

8.72

1.55

6.49

2.21

3.08

Notes:
1. Incomes and hourly wages are measured in 1967 dollars.
2. Family income is normalized by the Orshansky needs scale.

Though the average ages of parents and children are fairly close (40.8
years for parents and 36.6 for children), there is a great deal of variation
within each of these distributions. For this reason we have run prior
regressions of log-income on the age and age squared of the household head
in each given year, and we have chosen to work with the residuals from these
initial regressions in order to estimate the intergenerational elasticity of
income.

A further point in table 1 ought to be mentioned: the standard
deviation of needs-adjusted (Orshansky) income in 1991, a 6.5 figure, is one
and half times the mean of the children’s distribution. This phenomenon is
largely due to the presence of a family with an income in excess of 130 times
its needs. The exclusion of this observation would bring the coefficient of
variation down from 1.5 to 0.93, and as an approximate rule of thumb, would
deflate estimates of β by 4% to 5% for the two income measures used in this
study. As incomes of this size are however not unheard of in practice, we
have not decided to discard this observation from our sample.

4 Applications
The purpose of the applications presented below is to shed empirical

evidence on the claims made thus far in this paper. Firstly, we wish to
provide new estimates of the intergenerational elasticity in the light of the
rescaled OLS estimator. Next, we wish to quantify the bias of the OLS and
related averaging estimator. Thirdly, we provide mean-square error
comparisons between OLS, the averaging estimator and the new estimator of
β, in an attempt to provide practical guidelines for future empirical work in
the area. We also provide separate estimates for various concepts of economic
status in order to examine the sensitivity of our results to the choice of income
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definition. We provide further robustness checks by estimating our models
under various assumptions regarding the serial correlation of the
measurement error.

Throughout our applications OLS estimators are computed from a
regression of the child family’s 1991 income on that of the parent family in
1967. In the first column of table 2 we report estimates of β using the four
definitions of income considered in this study. The standard errors computed
here are those derived in section 2, intended to take into account the presence
of the variance component originating from the errors-in-variables problem.
OLS estimates of  β vary between 0.338 for hourly wages and 0.443 for needs-
adjusted Orshansky incomes. These  estimates are fairly similar to those
reported by Solon (1992, table 4) whose sample is also extracted from the
PSID. Solon’s estimates vary between 0.294 for wages and 0.476 for
Orshansky incomes (with values of 0.386 for earnings and 0.483 for total
family incomes). In all cases then, these estimates are within one standard
error from ours.

Table 2: estimates of the intergenerational elasticity when incomes
are averaged over two years

variable OLS AVE. b λλ γγ n

Orshansky 0.443 0.496 0.523 0.843 0.915 595
income (0.057) (0.059) (0.068)

[0.021] [0.006] [0.005]

tot. family 0.425 0.488 0.534 0.795 0.886 596
income (0.076) (0.080) (0.096)

[0.021] [0.010] [0.009]

earnings 0.390 0.403 0.405 0.962 0.981 549
(0.057) (0.057) (0.059)
[0.004] [0.003] [0.004]

wages 0.338 0.360 0.407 0.830 0.907 549
(0.048) (0.050) (0.058)
[0.010] [0.004] [0.003]

Notes:
1. AVE is the method of averaging, b is the rescaled OLS estimator.
2. λ is the signal to total variance ratio, γ  is the corresponding shrinkage factor for the
averaging estimator. n denotes sample size.
3. Standard errors are reported inside curly brackets, mean-square errors are reported
inside square [ ] brackets.
4. Parental income is averaged over 1967 and 1968, the child’s income pertains to 1991.

The next two columns of table 2 contain estimates of  β using the averaging
estimator β and our proposed estimator b. In these applications, incomes of
parents are averaged over 1967 and 1968 (that averaging intervenes in the
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computation of b can be seen via inspection of equation 16). Previous research
has established that both β̂  and β  are biased toward zero, though averaging
did reduce the errors-in-variables bias. Likewise, it is expected that of the
three estimators, b takes on the largest numerical value as it is intended to be
consistent. That b will exceed β̂  numerically will always be the case by
definition, since λ, the signal to total variance ratio, is smaller than unity. 

The findings of table 2 however confirm the hypothesized pattern that β < b
for all four definitions of income. It may be noted that averaging over two
years in the applications considered here produces an estimate of β around
10% higher when β  is used instead of β̂ . The intergenerational elasticity is
estimated at 0.496 for Orshansky incomes and 0.488 for total family incomes
by the method of averaging, versus 0.443 and 0.425 respectively for OLS. Use
of the new statistic b entails estimates of 0.523 and 0.534 respectively using
normalized incomes and total family incomes. For the two concepts based on
labor market outcomes, the correction introduced via calculation of the
averaging estimator is less large in comparison with OLS (estimates of β
increase from 0.390 to 0.403 for annual earnings of the household head, and
from 0.338 to 0.360 for hourly wages). On the basis of the evidence provided
by the estimator b we would however be led to conclude that the
intergenerational elasticity for hourly wages is somewhat higher (a 0.407
estimate versus 0.360 using the method of averaging and 0.338 for OLS).  The
0.405 estimate for earnings is however very much in line with the earlier
finding obtained by the averaging estimator.

The next two columns of table 2 provide further information on the
magnitudes of the biases of the OLS and averaging estimators (cf. equations
14 and 21). Estimates of λ provide indications on the level of shrinkage of OLS
from the population parameter β, while estimates of γ  serve the same purpose
for β . Leaving aside earnings, estimates of λ are in the range of 0.80 to 0.84,
while estimates of γ would indicate that averaging over two years results in
downwardly biased estimators, with the magnitude of the bias being in the
range of 8% to 12%. For earnings, estimates of λ and γ are respectively 0.96
and 0.98, which certainly stand out as being higher than in the cases of the
three other indicators of income status considered in this study. We shall have
more to say on this particular point as we proceed with an examination of the
results of table 3.

We have argued earlier in section 2 that comparisons between biased
estimators require an examination of their mean-square errors. In the context
of three estimators considered in this study, it was not possible to establish
analytically the superiority of either OLS, the method of averaging or b. It is
therefore of interest to examine numerically the relative performance of these
three estimators. In table 2 and elsewhere, we therefore report both standard
errors (inside curly brackets) and mean-square errors (inside square brackets).
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It may then be noted that of the three estimators β̂  possesses generally
the lowest standard error, while b exhibits the largest one. The tradeoff
between bias reduction and variance increase, in moving away from OLS,
appears to be empirically warranted in the sense that both β  and b possess
significantly lower mean-square errors. The exception to the rule once again
arises when we examine earnings linkages. There, all three estimators
produce very similar solutions and, as a result, their mean-square errors are
within the same order of magnitude.

In table 3 we replicate the estimations of table 2 taking four-year
averages of parental income. Once again, our benchmark estimator is that of
an OLS regression of the child’s 1991 income on that of his parents in 1967.
For this reason, the first column of table 3 replicates the same OLS estimates
of β as the corresponding column of table 2. However, because averaging is
now undertaken over a four-year horizon, (see equations 13) estimates of ppσ

and εεσ  may change, hence also altering the standard error and MSE of β̂ .
Estimates of the intergenerational elasticity resulting from the averaging
estimator over a four-year horizon are all higher than the corresponding
estimates for T=2. The estimate of the intergenerational elasticity rises from
0.496 to 0.527 for needs-adjusted incomes, from 0.488 to 0.513 for total family
incomes, from 0.403 to 0.408 for earnings and from 0.360 to 0.379 for wages.
With the exception of earnings, where the increment is negligible, these
findings confirm earlier results by Behrman and Taubman (1990), Solon
(1992), Zimmerman (1992) and others, that averaging over a longer time
horizon reduces the bias of the estimator β .

Table 3: estimates of the intergenerational elasticity when incomes are
averaged over four years

variable OLS AVE. b λλ γγ

Orshansky 0.443 0.527 0.559 0.792 0.939
income (0.057) (0.061) (0.072)

[0.017] [0.005] [0.005]

tot. family 0.425 0.513 0.569 0.746 0.922
income (0.076) (0.084) (0.102)

[0.027] [0.009] [0.010]

earnings 0.390 0.408 0.400 0.974 0.993
(0.057) (0.057) (0.058)
[0.003] [0.003] [0.003]

wages 0.338 0.379 0.433 0.781 0.935
(0.048) (0.052) (0.061)
[0.011] [0.004] [0.004]

Notes:
1 AVE is the method of averaging, b is the rescaled OLS estimator.
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2 λ is the signal to total variance ratio, γ  is the corresponding shrinkage factor for the
averaging estimator.

3 Standard errors are reported inside curly brackets, mean-square errors are reported
inside square brackets.

4 Parental income is averaged over the years 1967-70, the child’s income pertains to 1991.

With the exception of the case of earnings, we may note that estimates of the
intergenerational elasticity provided by the statistic b are also generally
higher. For Orshansky incomes the estimate of β rises from 0.523 to 0.559; for
total family incomes the estimate increases from 0.534 to 0.569, while for
hourly wages the increment is from 0.407 to 0.433. In all three cases, the
increase amounts to one half of a standard error.

Another way of stating that b is generally higher is to note that
estimates of λ (with the exception of earnings) are also somewhat smaller that
those of table 2. Figures for the variance ratio of permanent to observed
income are in the range of 0.75 to 0.79, implying that unadjusted OLS
estimates would require an upward correction of approximately 25 to 33%,
depending on the choice of income definition adopted. Likewise, estimates of
γ based on four-year averages would require multiplication by a factor of
1.065 to 1.085.

Standard errors for β  are somewhat higher when averaging is
undertaken over four years instead of two years. However, our calculations
imply that the variance increase is offset by a reduction in (square) bias, in the
sense that, in moving from T=2 to T=4, there is a small decrease in mean-
square error. The mean-square error of b is simply equal to its variance, a
decreasing function of λ. Because estimates of λ in table 3 are somewhat
smaller than those of table 2, this in turn results in a slight mean-square error
increase for b. However, in choosing between the three estimators, MSE
calculations once again tilt the balance against β̂ . Despite exhibiting a smaller
variance, OLS is estimated to possess 2.5 to 3 times the mean-square error of
the other two estimators depending on the definition of income status
considered.

It is in the case of earnings that none of these conclusions appear to
hold. The signal to total variance ratio λ is estimated at 0.962 in table 2, and at
0.974 in table 3. Taken at face value, these results would imply that the bias of
the OLS estimator is very small when examining earnings continuities. We
have two reasons for calling this conclusion to doubt. Firstly, it may be noted
that for the three other indicators the range of estimates is substantially lower,
and (combining the findings of tables 2 and 3) in the order of 0.75 to 0.84.
Furthermore, other available estimates in the literature do not offer evidence
of λ being so close to unity. Bowles (1972, table A1) reports estimates ranging
between 0.70 and 0.83 (for various income concepts), while Zimmerman
(1992, table 14) estimates this ratio to be 0.73 for wages and 0.66 for earnings.

Though we do not possess a full explanation for the rather high
estimate of λ in the case of earnings, we have found that it is sensitive to the
inclusion of individuals who supply few hours of labor annually. For
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instance, excluding 16 observations for parent and child heads who supply
less than 500 hours results in an estimate of 0.915 for λ, with β̂ =0.412(0.059),
β =0.463(0.061) and b=0.451(0.065). Likewise, if we exclude individuals who
supply fewer than 1000 hours of work annually, leaving us with a sample of
500 parent and child pairs, λ  falls further to 0.851, with the three estimators
taking the following values β̂ =0.414 (0.058), β =0.450 (0.061) and b=0.487
(0.068). In this latter case the estimate of λ for earnings falls closer in line with
the other related estimates of table 3.

Table 4: estimates of the intergenerational elasticity with serially correlated
measurement errors

MA (1) ΜΑ (2)ΜΑ (2)

AVE. b λλ ΑΑVΕ.Ε. b λλ

Orshansky 0.509 0.620 0.714 0.514 0.624 0.709
income (0.061) (0.080) (0.061) (0.080)

[0.014] [0.006] [0.015] [0.006]

tot. family 0.502 0.628 0.676 0.492 0.689 0.616
income (0.083) (0.112) (0.084) (0.123)

[0.021] [0.013] [0.034] [0.015]

earnings 0.392 0.399 0.978 0.422 0.422 0.924
(0.057) (0.058) (0.058) (0.061)
[0.003] [0.003] [0.004] [0.004]

wages 0.364 0.454 0.745 0.378 0.474 0.713
(0.051) (0.064) (0.051) (0.067)
[0.007] [0.004] [0.009] [0.005]

Notes:
1. AVE is the method of averaging, b is the rescaled OLS estimator and λ is the signal to

total variance ratio.
2 Standard errors are reported inside curly brackets, mean-square errors are reported

inside square [ ] brackets.
3 Parental income is averaged over 1967 and 1969 for the MA(1) model, and over 1967 and

1970 for the MA(2) specification.

In table 4 we relax the assumption that the transitory component of
parental income is uncorrelated over time, by adopting a moving average
specification for itε . We have estimated an MA(1) process (by averaging
incomes over 1967 and 1969) as well as an MA(2) specification (which
averages incomes over 1967 and 1970). Higher order moving average
processes may further be examined by constructing longer time-series of
observations on parental income, however in the present study we have
limited our time span to four years of measurement.
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We may now note that b estimates the intergenerational elasticity to be
above 0.6 in the context of Orshansky and total family incomes. The estimates
for the two specifications are broadly similar in the case of needs-adjusted
incomes, whereas  for total family incomes b increases from 0.628 to 0.689
(approximately one half of a standard error) in moving from the MA(1) to the
MA(2) model. We may also note that these estimates are higher than those of
tables 2 and 3, which were obtained under the assumption that transitory
incomes were uncorrelated over time. It may also be noted that in both the
MA(1) and MA(2) specifications b produces a higher estimate in the case of
wages, though the increment is less large than for Orshansky and total family
incomes.

The case of earnings stands again apart with the MA(1) model
producing for b very similar solutions to those of tables 2 and 3. We may
observe nonetheless that in this case the MA(2) model departs slightly from
the other results, where β is estimated at 0.422 instead of 0.400.

For the averaging estimator, we may note that estimates of the
intergenerational elasticity are only marginally higher for the MA(2) model in
comparison to the MA(1) specification (the estimate for family incomes is in
fact smaller than in the MA(1) specification). As averaging in table 4 is
undertaken over two periods, a natural comparison for β  with the
benchmark assumption that errors are uncorrelated, ought to be performed
by cross-examining estimates of table 2 (also based on two-year averages). It
may be noted here that differences in estimates are only minor in comparison
to the contrasts depicted by the rescaled OLS estimator b.

We may further discriminate between β  and b in the case of serially
correlated measurement errors by examining the mean-square errors reported
in table 4 for these two estimators. Unlike the earlier results of tables 2 and 3,
mean-square error contrasts between these two estimators now go in favor of
b despite its higher dispersion in comparison to β . This is of course another
way of observing that differences between these two estimators tend to be
larger once we abandon the assumption that errors are uncorrelated over
time.

In an attempt to summarize the lessons learned from these empirical
applications, we plot in figures 1 and 2 the range of estimates of the
intergenerational elasticity produced by β  and b. One immediate lesson is
that the choice of income definition does matter. From both figures 1 and 2 we
may tentatively conclude that measures based on total family resources will
depict a higher elasticity estimate than those based on labor market outcomes.
Bearing in mind that our earnings estimates must be handled with caution,
we may note that the 0.45 line in figure 1, and the 0.50 line in figure 2,
separate the range of estimates based on family incomes from those derived
from labor market outcomes. By comparing figures 1 and 2, we may also note
that for a given income concept the range of estimates tends to be tighter
when looking at the averaging estimator (with the exception of earnings
where the brackets are of the same size).
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Finally, in figure 3 we plot the range of estimates of the signal to total
variance ratio λ. These plots provide an overall view of the extent of the bias
of unadjusted OLS estimators of the intergenerational elasticity. The amount
of shrinkage of an OLS estimator may be quite large, in the 20% to 40%
bracket when looking at family incomes, and 16% to 29% in the case of
Orshansky incomes and wages. Our estimates also suggest that the bias of the
OLS estimator is fairly small when examining earnings continuities, but we
have also shown that estimates of λ are fairly sensitive to the inclusion of
individuals who supply a small amount of hours annually on the labor
market.

5 Conclusions
The large sample biases of both OLS and the method of averaging are

functions of the same two parameters, namely the permanent and transitory
variance components of income. By solving a system of two moment
equations for the variance of income at a given year, and a T-period average
of this same variable, we have derived separate analytical expressions for the
permanent and transitory variance components. In turn, we have proposed a
simple consistent estimator of the intergenerational elasticity of income via
division of the OLS estimator by the estimated signal to total variance ratio.
We have also provided some straightforward extensions of our framework
that cover the case of moving average type serial correlation in the errors of
measurement.

Previously reported standard errors for OLS and the related averaging
estimator ignored a component of variance originating from the error of
measurement, and were accordingly misspecified. The paper has also
provided appropriate variance formulations for these two estimators, based
on a study of the distribution of the OLS estimator in an errors-in-variables
context. A derivation of the variance of the averaging estimator has in fact
shown that the number of years over which parental income is averaged has
an ambiguous effect on the dispersion of this statistic. In our empirical
applications, we have in fact found it to be generally the case that OLS
exhibits a lower standard error than the averaging estimator. Thus, while the
averaging estimator is unambiguously preferred over OLS on grounds of its
smaller asymptotic bias, this conclusion does not carry over in the context of
variance rankings.

Because the signal to total variance ratio is smaller than unity, the
consistent estimator we have proposed in this paper by definition exhibits a
larger variance than the OLS estimator. As a means of formalizing the existing
tradeoff between bias reduction and variance increase, we were led to
compare the three estimators we have examined in this study in terms of their
mean-square errors. It was shown that no general ranking is available
between any given pair of estimators. However, in increasingly larger
samples, the variances of the three estimators vanish to zero. On such
grounds, mean-square error rankings collapse to a simpler exercise of
comparing estimators in terms of their asymptotic biases. In large samples
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then, a case can be made for preferring the rescaled OLS estimator over the
method of averaging, and the latter over the unadjusted OLS estimator.

In practice, however, parent and child samples rarely exceed 1000
observations. For this reason, we have cautioned against the above large
sample reasoning, and have suggested as an alternative guideline to compute
mean-square errors numerically. The purpose of our empirical applications
was to provide new estimates of the intergenerational elasticity, to evaluate
the biases of the OLS and averaging estimators, and to compute mean-square
errors for the three estimators within the context of a medium size US sample.

Our estimates of the intergenerational elasticity range between 0.34
and 0.69. Underlying this variation are factors related to the estimation
method, the income definition, and the assumptions underlying the serial
correlation in the transitory component of income. Estimates range between
0.34 and 0.44 for OLS, between 0.36 and 0.53 for the method of averaging, and
between 0.40 and 0.69 for the rescaled OLS estimator. As a general rule,
measures based on total family resources tend to depict more persistence than
those based on labor market outcomes. For instance, with reference to the
rescaled OLS estimator, the range of estimates pertaining to total family and
Orshansky incomes are both above 0.5, while those derived from annual
earnings and hourly wages are below this value. The 0.45 figure separates
estimates based on family resources and those derived from labor market
measures when the averaging estimator is employed instead.

We have also found that a relaxation of the assumption that errors of
measurement were serially uncorrelated tended to result in higher estimates
of the intergenerational elasticity. This pattern is more pronounced in the case
of MA(2) models over their MA(1) counterparts, in comparison to the
benchmark specification that transitory income is serially uncorrelated. Top of
the range estimates for all four income concepts (0.62 for Orshansky incomes,
0.69 for total family incomes, 0.42 for annual earnings, and 0.47 for hourly
wages) were in fact obtained from the rescaled OLS estimator under the
MA(2) specification.

Differences between OLS estimates and those provided by our
proposed estimator, rescaled OLS, may be accounted for by the size of the
variance ratio of permanent to total income. Estimates of the signal to total
variance ratio vary between 0.71 and 0.84 for needs adjusted family incomes,
between 0.62 and 0.80 for total family incomes, between 0.92 and 0.98 for
earnings, and between 0.71 and 0.83 for hourly wages. These results imply
that, depending on the choice of income definition, the asymptotic bias of the
OLS estimator may be quite large. Our results suggest that the OLS estimator
shrinks the population elasticity by 20% to 40% in the case of total family
incomes, and by approximately 16% to 29% when working with hourly wages
and Orshansky incomes. It is in the case of earnings continuities that the bias
of the OLS estimator would appear to be small. However, we have also noted
that earnings based estimates of the signal to total variance ratio are fairly
sensitive to the sampling of individuals who work a small number of hours
annually.
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Our numerical mean-square error calculations were undertaken in
order to provide a common ground for comparing estimators with differing
biases and variances. While OLS will often exhibit the smallest variance, the
magnitude of its bias is such as to render it the least preferable of the three
estimators on grounds of mean-square error. When transitory income is taken
to be uncorrelated over time, the averaging and rescaled OLS estimators
perform broadly alike according to the mean-square error criterion. The
rescaled OLS estimator depicts a larger dispersion in the data, while the
averaging estimator is biased towards zero. Our calculations suggest that in a
sample of 550 to 600 observations the variance increase of the rescaled OLS
estimator makes up for the bias reduction in comparison to the averaging
estimator.

This latter conclusion however no longer holds when we relax the
assumption that the transitory component of income is uncorrelated over
time. In our MA(1) and MA(2) model estimates, the averaging estimator
possesses 1.7 to 2.5 times the mean-square error of the rescaled OLS estimator.
Setting aside the case of annual earnings where all estimators provide very
similar solutions, the gains from consistent estimation become apparent in
our data when errors of measurement are taken to be moving average
processes.

At a more general level, we may note that estimation problems similar
in nature to those discussed in this paper are bound to occur in micro-models
where permanent income features as an explanatory variable. A related
literature on siblings correlations in earnings seeks to quantify the importance
of family and community background variables in the determination of
economic attainment. By examining the parallel estimation problems
underlying this literature and the ones on income transmission (and these are
clearly spelled out in Solon, 1999), we note that our framework may equally
be made suitable for providing a new perspective on the analysis of siblings
correlations in economic outcomes.

There are some certainly more complex error structures which we have
not covered in our discussion. Typically, the transitory component of income
may follow other laws of motion than the MA specification considered here.
Auto-regressive, or a mixture of auto-regressive and moving average (ARMA)
specifications would necessitate a reformulation of the moment equations on
the basis of which the signal to total variance ratio is to be derived.
Rethinking estimation in the light of ARMA error processes is certainly of
great value, as it nests within its framework both the moving average and
auto-regressive specifications considered thus far. Estimation of these more
general error processes would however require longer time series on parental
income than the ones considered to-date in the empirical literature on
intergenerational mobility. Nonetheless, we believe this could well be a
fruitful area for further research.
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Figure 1: Range of estimates of β derived from the averaging estimator

Figure 2: Range of estimates of β derived from the modified OLS estimator
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Figure 3: Range of estimates of λ, the signal to total variance ratio
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